459 research outputs found

    Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy

    Get PDF
    It is generally believed that increase in adult contractile cardiac mass can be accomplished only by hypertrophy of existing myocytes. Documentation of myocardial regeneration in acute stress has challenged this dogma and led to the proposition that myocyte renewal is fundamental to cardiac homeostasis. Here we report that in human aortic stenosis, increased cardiac mass results from a combination of myocyte hypertrophy and hyperplasia. Intense new myocyte formation results from the differentiation of stem-like cells committed to the myocyte lineage. These cells express stem cell markers and telomerase. Their number increased >13-fold in aortic stenosis. The finding of cell clusters with stem cells making the transition to cardiogenic and myocyte precursors, as well as very primitive myocytes that turn into terminally differentiated myocytes, provides a link between cardiac stem cells and myocyte differentiation. Growth and differentiation of these primitive cells was markedly enhanced in hypertrophy, consistent with activation of a restricted number of stem cells that, through symmetrical cell division, generate asynchronously differentiating progeny. These clusters strongly support the existence of cardiac stem cells that amplify and commit to the myocyte lineage in response to increased workload. Their presence is consistent with the notion that myocyte hyperplasia significantly contributes to cardiac hypertrophy and accounts for the subpopulation of cycling myocytes

    Fluid-structure interaction simulations with a LES filtering approach in solids4Foam

    Get PDF
    The goal of this paper is to test solids4Foam, the fluid-structure interaction (FSI) toolbox developed for foam-extend (a branch of OpenFOAM), and assess its flexibility in handling more complex flows. For this purpose, we consider the interaction of an incompressible fluid described by a Leray model with a hyperelastic structure modeled as a Saint Venant-Kirchhoff material. We focus on a strongly coupled, partitioned fluid-structure interaction (FSI) solver in a finite volume environment, combined with an arbitrary Lagrangian-Eulerian approach to deal with the motion of the fluid domain. For the implementation of the Leray model, which features a nonlinear differential low-pass filter, we adopt a three-step algorithm called Evolve-Filter-Relax. We validate our approach against numerical data available in the literature for the 3D cross flow past a cantilever beam at Reynolds number 100 and 400

    Modulating Tumor Microenvironment: A Review on STK11 Immune Properties and Predictive vs Prognostic Role for Non-small-cell Lung Cancer Immunotherapy

    Get PDF
    The quest for immunotherapy (IT) biomarkers is an element of highest clinical interest in both solid and hematologic tumors. In non-small-cell lung cancer (NSCLC) patients, besides PD-L1 expression evaluation with its intrinsic limitations, tissue and circulating parameters, likely portraying the tumor and its stromal/immune counterparts, have been proposed as potential predictors of IT responsiveness. STK11 mutations have been globally labeled as markers of IT resistance. After a thorough literature review, STK11 mutations condition the prognosis of NSCLC patients receiving ICI-containing regimens, implying a relevant biological and clinical significance. On the other hand, waiting for prospective and solid data, the putative negative predictive value of STK11 inactivation towards IT is sustained by less evidence. The physiologic regulation of multiple cellular pathways performed by STK11 likely explains the multifaceted modifications in tumor cells, stroma, and tumor immune microenvironment (TIME) observed in STK11 mutant lung cancer, particularly explored in the molecular subgroup of KRAS co-mutation. IT approaches available thus far in NSCLC, mainly represented by anti-PD-1/PD-L1 inhibitors, are not promising in the case of STK11 inactivation. Perceptive strategies aimed at modulating the TIME, regardless of STK11 status or specifically addressed to STK11-mutated cases, will hopefully provide valid therapeutic options to be adopted in the clinical practice

    PD-L1 SNPs as biomarkers to define benefit in patients with advanced NSCLC treated with immune checkpoint inhibitors

    Get PDF
    Objective: To investigate the role of CTLA-4, PD-1 (programmed death-1), and PD-L1 (programmed death-ligand 1) single nucleotide polymorphisms (SNPs) in predicting clinical outcome of patients with advanced non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). Methods: A total of 166 consecutive patients were included. We correlated SNPs with clinical benefit, progression-free survival, time to treatment failure, and overall survival and evaluated the incidence of SNPs in nonresponder and long clinical benefit groups. Results: Considering the entire cohort, no correlation was found between SNPs and clinical outcome; however, PD-L1 rs4143815 SNP and the long clinical benefit group showed a statistically significant association (p = 0.02). The nonresponder cohort displayed distinctive PD-L1 haplotype (p = 0.05). Conclusion: PD-L1 SNPs seem to be marginally involved in predicting clinical outcome of NSCLC treated with ICI, but further investigations are required

    Cobalt oxide nanoparticles induce oxidative stress and alter electromechanical function in rat ventricular myocytes

    Get PDF
    Background: Nanotoxicology is an increasingly relevant field and sound paradigms on how inhaled nanoparticles (NPs) interact with organs at the cellular level, causing harmful conditions, have yet to be established. This is particularly true in the case of the cardiovascular system, where experimental and clinical evidence shows morphological and functional damage associated with NP exposure. Giving the increasing interest on cobalt oxide (Co3O4) NPs applications in industrial and bio-medical fields, a detailed knowledge of the involved toxicological effects is required, in view of assessing health risk for subjects/workers daily exposed to nanomaterials. Specifically, it is of interest to evaluate whether NPs enter cardiac cells and interact with cell function. We addressed this issue by investigating the effect of acute exposure to Co3O4-NPs on excitation-contraction coupling in freshly isolated rat ventricular myocytes. Results: Patch clamp analysis showed instability of resting membrane potential, decrease in membrane electrical capacitance, and dose-dependent decrease in action potential duration in cardiomyocytes acutely exposed to Co3O4-NPs. Motion detection and intracellular calcium fluorescence highlighted a parallel impairment of cell contractility in comparison with controls. Specifically, NP-treated cardiomyocytes exhibited a dose-dependent decrease in the fraction of shortening and in the maximal rate of shortening and re-lengthening, as well as a less efficient cytosolic calcium clearing and an increased tendency to develop spontaneous twitches. In addition, treatment with Co3O4-NPs strongly increased ROS accumulation and induced nuclear DNA damage in a dose dependent manner. Finally, transmission electron microscopy analysis demonstrated that acute exposure did lead to cellular internalization of NPs. Conclusions: Taken together, our observations indicate that Co3O4-NPs alter cardiomyocyte electromechanical efficiency and intracellular calcium handling, and induce ROS production resulting in oxidative stress that can be related to DNA damage and adverse effects on cardiomyocyte functionality

    Soluble PD-L1 and Circulating CD8+PD-1+ and NK Cells Enclose a Prognostic and Predictive Immune Effector Score in Immunotherapy Treated NSCLC patients

    Get PDF
    Introduction: Upfront criteria to foresee immune checkpoint inhibitors (ICIs) efficacy are far from being identified. Thus, we integrated blood descriptors of pro-inflammatory/immunosuppressive or effective anti-tumor response to non-invasively define predictive immune profiles in ICI-treated advanced non-small cell lung cancer (NSCLC). Methods: Peripheral blood (PB) was prospectively collected at baseline from 109 consecutive NSCLC patients undergoing ICIs as first or more line treatment. Soluble PD-L1 (sPD-L1) (immunoassay), CD8+PD-1+ and NK (FACS) cells were assessed and interlaced to generate an Immune effector Score (IeffS). Lung Immune Prognostic Index (LIPI) was computed by LDH levels and derived Neutrophil-to-Lymphocyte Ratio (dNLR). All these parameters were correlated with survival outcome and treatment response. Results: High sPD-L1 and low CD8+PD-1+ and NK number had negative impact on PFS (P < 0.001), OS (P < 0.01) and ICI-response (P < 0.05). Thus, sPD-L1high, CD8+PD-1+low and NKlow were considered as risk factors encompassing IeffS, whose prognostic power outperformed that of individual features and slightly exceeded that of LIPI. Accordingly, the absence of these risk factors portrayed a favorable IeffS characterizing patients with significantly (P < 0.001) prolonged PFS (median NR vs 2.3 months) and OS (median NR vs 4.1) and greater benefit from ICIs (P < 0.01). We then combined each risk parameter composing IeffS and LIPI (LDHhigh, dNLRhigh), thus defining three distinct prognostic classes. A remarkable impact of IeffS-LIPI integration was documented on survival outcome (PFS, HR = 4.61; 95%CI = 2.32-9.18; P < 0.001; OS, HR=4.03; 95%CI=1.91-8.67; P < 0.001) and ICI-response (AUC=0.90, 95%CI=0.81-0.97, P < 0.001). Conclusion: Composite risk models based on blood parameters featuring the tumor-host interaction might provide accurate prognostic scores able to predict ICI benefit in NSCLC patients

    Functionalised peptide hydrogel for the delivery of cardiac progenitor cells.

    Get PDF
    Heart failure (HF) remains one of the leading causes of death worldwide; most commonly developing after myocardial infarction (MI). Since adult cardiomyocytes characteristically do not proliferate, cells lost during MI are not replaced. As a result, the heart has a limited regenerative capacity. There is, therefore, a need to develop novel cell-based therapies to promote the regeneration of the heart after MI. The delivery and retention of cells at the injury site remains a significant challenge. In this context, we explored the potential of using an injectable, RGDSP-functionalised self-assembling peptide - FEFEFKFK - hydrogel as scaffold for the delivery and retention of rat cardiac progenitor cells (CPCs) into the heart. Our results show that culturing CPCs in vitro within the hydrogel for one-week promoted their spontaneous differentiation towards adult cardiac phenotypes. Injection of the hydrogel on its own, or loaded with CPCs, into the rat after injury resulted in a significant reduction in myocardial damage and left ventricular dilation
    corecore