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Opinion statement 

The quest for immunotherapy (IT) biomarkers is an element of highest clinical interest in both solid 

and hematologic tumors. In non-small cell lung cancer (NSCLC) patients, besides PD-L1 expression 

evaluation with its intrinsic limitations, tissue and circulating parameters, likely portraying the tumor 

and its stromal/immune counterparts, have been proposed as potential predictors of IT 

responsiveness. STK11 mutations have been globally labeled as markers of IT resistance. After a 

thorough literature review, STK11 mutations condition the prognosis of NSCLC patients receiving 

ICI-containing regimens, implying a relevant biological and clinical significance.  

On the other hand, waiting for prospective and solid data, the putative negative predictive value of 

STK11 inactivation towards IT is sustained by less evidence. The physiologic regulation of multiple 

cellular pathways performed by STK11 likely explains the multifaceted modifications in tumor cells, 

stroma and tumor immune microenvironment (TIME) observed in STK11 mutant lung cancer, 

particularly explored in the molecular subgroup of KRAS co-mutation. IT approaches available thus 

far in NSCLC, mainly represented by anti-PD-1/PD-L1 inhibitors, are not promising in the case of 

STK11 inactivation. Perceptive strategies aimed at modulating the TIME, regardless of STK11 status 

or specifically addressed to STK11-mutated cases, will hopefully provide valid therapeutic options to 

be adopted in the clinical practice. 
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1. Introduction 

The immunotherapy (IT) revolution in non-small cell lung cancer (NSCLC) has left unanswered 

fundamental questions on our actual understanding of the immune control of cancer [1,2]. Major 

drawbacks reside in the still limited population of patients responsive to IT and the partial success of 

combinatory approaches aimed at improving survival outcomes [3]. Thus, the identification of 

predictive biomarkers represents a priority in the actual strategies to optimize IT efficacy [4,5]. Ideal 

candidates to predict IT response should reflect the tumor - host interaction and its evolutionary 

changes following treatment. In this scenario the tumor immune microenvironment (TIME) and 

mutational status are pillars to guide comprehensive evaluation of NSCLC patients suitable for IT 

approach. 

The characterization of TIME has been the object of intense investigations, mainly involving 

the assessment of PD-L1 status, tumor infiltrating lymphocytes (TILs) density and phenotype, and 

activating (e.g. interferon-γ, IFN-γ) or inhibitory (e.g. CD38+, transforming growth factor-β) 

signaling pathways [6–8]. Specifically, cancer classification into "hot" (T cell-inflamed, PD-L1high, 

CD8+rich, IFN-γ signature) and “cold" (immune-excluded, characterized by PD-L1low, immune 

suppressive phenotypes and TGF-β signature; immune-desert, with low CD8+ infiltration) tumors has 

demonstrated prognostic and predictive potential [9,10] (Figure 1). Since cancer immunoediting and 

immune response rely on  the cross talk between tumor and its microenvironment not only at the 

organ level, but also involving the peripheral circulation that provides immune cells, cytokines, 

growth factors and chemokines, great efforts have been addressed to circulating parameters [11] 

(Figure 1). 

The notion that specific genetic mutations encompassing oncogenic drivers such as EGFR and 

ALK or the interferon (IFN)-γ - related signaling pathways [12] might impact on IT effectiveness has 

been consolidated in the last decades  [13]. Reproducible and consistent evidence, mostly obtained in 

KRAS-mutant NSCLC, have suggested serine/threonine kinase 11 (STK11), coding for the liver 

kinase B1 (LKB1) protein, as a critical factor implicated in anti-tumor immune response, ultimately 

affecting the proneness to respond to IT [14].   

While the biological heterogeneity and therapeutic responsiveness of KRAS-mutant 

(KRASmut) NSCLC represents a formidable challenge, it has been widely demonstrated that the 

coexistence of STK11 mutations (STK11mut) confers an intrinsic resistance to IT [14,15].  STK11 is 

a tumor suppressor gene whose mutations can be identified in nearly 15% of lung adenocarcinoma 

and in up to 30% of KRASmut tumors [16]. Acting as a tumor suppressor gene, STK11mut with 

functional significance inevitably lead to gene inactivation which, in addition to promote autonomous 

cell growth, conditions metabolic alterations and an immunosuppressive TIME [16,17].  
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Thus, NSCLC carrying STK11mut may represent a suitable model to assess the contribution 

of both tumor intrinsic and immune microenvironmental variables to the negative outcome of IT. 

Negative predictive biomarkers for IT benefit may well play a similar or even superior role compared 

to positive one not only in sparing unnecessary treatment but also in the identification of defective 

pathways and their potential therapeutic targeting. By dissecting the multifaceted involvement of 

STK11 on cancer biology and immune evasion, the attempt of the present review is to shed light on 

the still controversial issue of compelling biomarkers predictive of the response to immunotherapy. 

 

2. How to define STK11 deficiency  

Located on the short arm of chromosome 19 (19p13.3), STK11 gene spans 23Kb and is comprised of 

nine coding exons and one non-coding exon. The STK11 protein consists of 433 amino acids with an 

N-terminal domain containing a nuclear localization signal and a phosphorylation site with unknown 

function at Serine 31, a central kinase domain (residues 44-309), and a C-terminal domain.  

Germline STK11 mutations are responsible for the Peutz-Jeghers syndrome, an autosomal-

dominant hamartomatous polyposis syndrome [18]. In sporadic cancers, a wide range of somatic 

STK11 genomic alterations were observed (single nucleotide variation, indels, hypermethylation of 

the promoter and homozygous deletions of LKB1) making challenging the development of a single 

assay capable of detecting all such alterations [19–21]. Hence, STK11 deficiency could be assessed 

with different screening strategy, mainly represented by next generation sequencing (NGS) 

technology for assessing STK11 variants or immunohistochemical (IHC) approach to study LKB1 

expression. 

Both tissue and liquid biopsies have been used as testing material for detection of STK11mut 

[22–25]; the choice of NGS targeted panel must be carefully considered mostly for co-occurrence 

mutation analysis. In fact, in many daily routine practice NGS panel, genes of interest like KEAP1 

and/or SMRCA4 are absent [26,27]. Usually, classification of mutations was categorized as disease 

associated on the basis of the designation in the NGS report (i.e. disease associated versus variant of 

unknown significance, VUS) querying the reference database e.g. cBioPortal, COSMIC and TCGA-

Bioportal [22]. Currently, more than 400 unique mutations have been described for the STK11 gene, 

among which ~70% promote the truncation of the protein and the other 30% represent missense 

mutations [28].  

A correlation between the position of the STK11mut and their behavior as tumor suppressor 

versus oncogene was also observed. Pecuchet et al. described that disruptive mutations (nonsense, 



frameshift and splice mutations) tended to be over-represented in exons 1 and 2 [29], data confirmed 

also in a dataset from STK11 NGS across a variety of cancers in cBioPortal [30]. Truncating mutations 

could favor the use of alternative ATG initiation codon and the expression of a short isoform lacking 

the 124 N-terminal amino acid described as a putative oncogenic ΔN isoform [29]. 

On the contrary, no direct correlation between mutational status and loss of expression by IHC 

was observed making NGS technology a not exhaustive strategy to define LKB1 status [25,31,32]. 

For example, Skoulidis et al reported 17.3% of STK11 wild-type tumors with the absence of LKB1 

protein expression by IHC, thus confirming that genetic (i.e. mutational) LKB1 assessment might be 

insufficient to predict LKB1 functional status [25]. 

Studies on protein expression could be performed with different STK11/LKB1 rabbit 

monoclonal antibody: different clones were tested such as D60C5F10 (Cell Signaling Technology) 

[24] or Ley 37D/G6 (Abcam) [32]. The expression could be evaluated grading the cytoplasmic 

staining intensity, ranging from no discernible (0) to strong cytoplasmic staining (3+). Quantitative 

IHC for STK11/LKB1 can capture STK11/LKB1-deficient tumors in the absence of STK11/LKB1 

genomic alterations, representing a potentially reliable, simple, and cost-effective method to evaluate 

LKB1 loss. 

Other approaches are emerging as useful tool to investigate alternative mechanisms 

responsible for LKB1 loss of function: studying the RNA level could highlight the effect mediated 

by epigenetic inactivation [33] or homozygous and intragenic deletions [20,34]. Chen et al. developed 

a NanoString-based assay, validated in multiple datasets and subsequently tested in a cohort of 150 

lung adenocarcinoma patients, demonstrating high superior overall performance of STK11 signature 

studied by NanoString with respect to IHC and mutation status [31].    

The unequivocal definition of LKB1 deficiency is actually an open issue: the presence of 

inactivating STK11 mutations or the lack of LKB1 protein expression at IHC analysis are often 

discordant. Thus, an integrative analysis of LKB1 genetic alteration is timely and important to provide 

a better estimate of the incidence of this important tumor suppressor gene. 

Thus far, both preclinical and clinical evidence regarding the impact of STK11 status on the 

immune context and response to IT in lung malignancies have been mainly documented through the 

analysis of STK11mut, while the evaluation of LKB1 expression being less represented across studies.  

 

 



3. Biological implications of STK11 in NSCLC 

3.1.  Implication of STK11 and its genomic loss on cancer growth and metabolism  

Under physiologic conditions, STK11 acts a master upstream kinase, directly phosphorylating and 

activating AMP-activated protein kinase (AMPK) and 12 related kinases with crucial roles in cell 

processes, such as metabolic regulation, DNA integrity, proliferation, polarity establishment and 

control of spatial orientation of the cellular structures, angiogenesis, and interaction with tissue milieu 

[35] (Figure 1). STK11-AMPK pathway serves as a cell metabolic checkpoint arresting cell growth 

in conditions of low intracellular ATP levels [35,36]. In addition, under exogeneous activation, 

STK11-AMPK  signaling is able to induce p53 activity and interfere with cyclins/cyclin-dependent 

kinase interplay, thus blocking G1/S transition [37]. Moreover, whereas DNA damage occurs, this 

complex is able to localize into the nucleoplasm and preserves cells from genomic instability [38]. 

Based on these physiologic actions, STK11 has been described as tumor suppressor and 

experimental and clinical observations support the tumorigenic potential of its mutations. Evidence 

of the impact of STK11mut on cancer growth, aggressiveness, metabolism and angiogenesis [28] have 

been comprehensively reviewed in several reports [16,35]. Moreover, STK11 loss of function alters 

the regulation of PAK1 [39], FAK and CDC42 [40] thereby leading to epithelial-to-mesenchymal 

transition (EMT) and metastases [41,42]. 

Importantly, the metabolic derangement produced by STK11 defects is translated in a redox 

imbalance. As a consequence of increased energetic and metabolic stress, STK11-deficient NSCLC 

cells generate elevated levels of reactive oxygen species (ROS) [43] (Figure 1). As the extent and 

type of ROS modulate basic biological processes in cancer cells including mutation, proliferation, 

DNA damage, autophagy and apoptosis [44], this phenomenon has several implications on the 

mechanisms responsible for the pathogenicity of STK11 loss of function. Moreover, the hypothesis 

has been advanced that this metabolic driven property may be linked to the close interaction of STK11 

with signaling molecules instrumented to tightly control intracellular displaced DNA or chromatin 

fragments and their impact on immune surveillance (see section 3.3). 

Several other downstream regulated genes are also fundamental to decipher the multiple 

pathways involved STK11 onco-suppressive nature. Recently, a striking similarity in histologic and 

gene expression features of STK11- and salt-induced kinases (SIKs)-deficient tumors suggests a 

common tumor suppressive trait [45]. Moreover, STK11mut human adenocarcinoma cell lines and 

primary tumors display at high rate a SIK-deficient signature, thus opening new scenarios in 
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deciphering alternative mechanistic insights and potential therapeutic implications in this complex 

subset of NSCLC patients [45].  

 

3.2. STK11 and tumor immune microenvironment 

In the era of immunotherapy, the complex interplay between STK11 and TIME, has been the object 

of several preclinical and clinical investigations in both non-neoplastic diseases and cancer. Linking 

cellular bioenergetics with cell proliferation and metabolism, STK11 impacts on both tumor biology 

(see section 3.1) and T cell modulation [46], thereby encompassing multiple steps to shape TIME 

(Figure 1).  In well-designed preclinical studies T cell selective knock out of STK11 reduced the 

progenitor pool of T effector cells [46,47]. Accordingly, transgenic STK11 ablation in mice prevented 

TCR-β-selected thymocyte differentiation and expansion via CD98 alterations, thus blunting the 

proliferative response of peripheral T cells [48]. 

Additional evidence on the involvement of STK11 in T effector and suppressor cell balance 

have been provided by its critical role in sustaining T regulatory cells (Tregs) function through the 

stabilization of FOXP3 [49]. In contrast, conditional knockout of STK11 gene in dendritic cells (DCs) 

leads to excessive Treg cell proliferation involving IKK/IKBα-independent activation of NF-

κB/OX40L pathway [50]. Moreover, knock-out of STK11 in mice results in increased levels of pro-

inflammatory cytokines and enzymes in bone marrow-derived macrophages upon lipopolysaccharide 

(LPS)-induced NF-κB activation [51].  

 In the last few years, the close interplay between STK11mut cancer cells and TIME has been 

deeply investigated in the context of NSCLC. Not surprisingly, also in reason of the physiologic 

implication of STK11 in phenotypic and functional integrity of the immune system, multiple TIME 

compartments are affected by defective mutation of the gene.  

Inactivating STK11 aberrations, mainly present in KRASmut adenocarcinoma, have arisen as 

major determinants of cold NSCLC TIME, dominated by low CD3+, CD4+ and CD8+ TILs, high 

Tumor Associated Neutrophils (TANs) and decreased levels of PD-L1 in spite of a high/intermediate 

TMB[16]. The negative effect exerted by STK11 on PD-L1 expression has been repeatedly reported 

[52–54] and appears to overcome PD-L1 mRNA stabilization promoted by KRAS [55].  

In depth proteogenomic analysis of a series of nearly 100 lung adenocarcinomas revealed that, 

among the genomic landscape, the most significant impairment in immune activation was present in 

STK11mut tumors [56]. At transcriptional and post-transcriptional levels, severe reductions in DCs, 

NK T cells, and macrophages were coupled with a defined neutrophil degranulation signature. 



Intriguingly, this functional defect was independent from the abundance of neutrophils. Importantly, 

when these downregulated immune features were entered in a deep-learning-based predictive 

algorithm, a highly accurate prediction of STK11 mutational status from histopathological slides was 

attained. The predominant immunosuppressive TIME of STK11mut tumors is also supported by a 

retrospective analysis of 282 NSCLC documenting a reduced intratumor DC density [57]. Findings 

from a microarray-based gene expression analysis on a cohort of more than 400 lung adenocarcinoma 

showed that only STK11mut were associated with significantly lower immune surveillance signature 

characterized by NF-kB activity and T-cell receptor a-b chain expression [58].  

On both mouse models and cell lines, STK11 loss resulted in an altered cytokine milieu with 

increased expression of proinflammatory CXCL7, G-CSF, IL-1β and IL-6 fostering neutrophils 

recruitment and T-effector cell suppression [59]. Compared to KRASmut tumors, 

KRASmut/STK11mut tumors displayed higher infiltration of TANs with enhanced expression of 

arginase 1 (ARG1) and IL-10, which exerted a negative effect on T lymphocytes balance leading to 

Tregs expansion and T-effector cells exhaustion.  Moreover, STK11 inactivation conditioned lower 

levels of tissue PD-L1 expression in KRASmut/STK11mut tumors and in cultured murine and human 

cells lines [59].  

 Genetically engineered mouse models exploring the progenitor-specific etiologies of lung 

cancer histotypes, in addition to highlight the oncogenic boost of STK11, have shown the prominent 

ability of immune escape in tumors generated in mutant mice by downregulation of the antigen 

presenting machinery and TAN infiltration [60].  

The critical impact of STK11 loss of function on lung cancer immune microenvironment is 

generally ascribed to epigenetic repression of stimulator of interferon genes (STING), causing 

insensitivity to cytosolic double-stranded DNA (ds-DNA) accumulation [61] (see section 3.3). An 

additional molecular mechanism contributing to the inert immune phenotype associated to STK11mut 

may reside in the oncogenic synergism between KRAS and MYC [62,63]. This co-operation induces 

high levels of CCL9 and IL-23, epithelial-derived signaling molecules involved in stromal 

reprogramming, thus triggering the recruitment of macrophages and the exclusion of adaptive and 

innate immune response by T and B lymphocytes and NK cells, respectively. 

Consistently, the negative impact of STK11 aberrations on cancer immune background has 

been recently supported by the observation that both early-stage and advanced NSCLC harboring 

STK11mut display a lower expression of PD-L1 coupled with poor immune cell infiltration [54,64].   



Thus, in keeping with its central role in shaping tumor immunobiology and immune 

contexture, STK11 genomic alteration endows the tumor with multiple paths to escape the immune 

system, significantly affecting patient outcome and response to IT.  

The complexity of STK11-driven immune features prompts the development of novel synergistic and 

highly personalized therapeutic approaches. 

 

3.3. Defective STK11 Desensitizes the STING pathway to Promote Tumor Immune Evasion  

Under normal conditions, the physiologic activation of AMPK by STK11 is not only involved in 

metabolic processes mainly converging to mammalian target of rapamycin complex 1 (mTORC1) 

inhibition, but also results in enhancement of STING [65] (Figure 1). The relevant role of STING in 

innate immunity resides in its ability to sense, through cyclic GMP–AMP synthase (c-GAS), cytosolic 

genomic ds DNA (gDNA) and, as more recently documented, also mitochondrial dsDNA (mtDNA) 

[66]. The immune signaling cascade triggered by STING activation ultimately results in increased 

expression of cytotoxic type 1 IFNs and T cell recruiting chemokines as well as PD-L1 [61]. This 

tightly regulated mechanism of immune surveillance is disrupted in KRASmut/STK11mut NSCLC 

and represents the molecular underpinning of the evidence that STK11 aberrations confer an 

unfavorable TIME and condition an impaired immune response [65,67]. Specifically, STK11 loss of 

function is transduced in downregulation of AMPK-STING pathway and refractoriness to 

cytoplasmic dsDNA sensing which is further aggravated by the unrestrained inhibitory pressure of 

AMPK on epigenetic silencing enzymes (DNA (cytosine-5)-methyltransferase 1 [DNMT1], 

Enhancer of zeste homolog 2 [EZH2]) [61]. Strong supporting data on the clinical implication of 

these in vitro observations have been provided by the analysis of STING expression on a large series 

of NSCLC [68]. Indeed, STK11mut cases had the lowest levels of STING and immune gene 

expression, pointing to the derangement driven by genetic defects of this kinase in orchestrating the 

innate and IT induced immune response against cancer.  

As deceptive STING plays a central role in the immunosuppressive trait of STK11mutated 

lung cancer, several preclinical and clinical (NCT04096638, NCT03843359 and NCT04420884) 

attempts have been proposed to overcome IT resistance by local [69]  or systemic cyclic dinucleotide 

(CDN) STING agonists. Acceptable safety and efficacy were obtained by MK-1454, a locally 

delivered CDN STING agonist, when combined with pembrolizumab in a phase I trial 

(NCT03010176). Preliminary evidence of STING activation by this approach were documented by 

increased serum levels of STING-associated cytokines [70]. Due to the limited applicability of 
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intratumor injection in advanced tumors, more recently, an oral formulation of two non-CDN STING 

agonists has been explored, showing promising experimental results in terms of anti-tumor immunity 

and sensitization to IT [71,72]. With the potential of changing the actual therapeutic landscape, 

optimization of these approaches together with the adoption of patient- and disease-specific selective 

measures may open new venues in the overall management of cancer. 

 

3.4. STK11 and tumor stromal-vascular network 

In solid malignancies the contribution of stromal compartments typically exceeds that of neoplastic 

cells in the structural composition of the tumor mass. This intricate network of fibroblasts, 

mesenchymal cells, blood and lymphatic endothelial cells embedded in extracellular matrix 

physically and functionally sustains the multiple players regulating cancer fate. Compelling evidence 

of the relevance of STK11 in shaping tumor stroma arises from its interplay with TGF-b pathway and 

extracellular matrix (ECM) remodeling (Figure 1).  

 In addition to a direct biochemical interaction with TGF-b [73], in the context of 

gastrointestinal tumors, STK11 plays a crucial role in epithelial-stromal cross talk dictating multistep 

tumor formation. Specifically, the engagement of mesenchymal STK11 with TGF-b signaling in 

epithelial cells represents a determinant factor for the development of gastrointestinal polyps in 

humans and mice [74]. STK11 deficiency has also been shown to affect stromal TGF-β expression 

thus altering tumor suppression [75]. To the best of our knowledge, no such mechanisms have been 

shown to be operative in STK11mut lung cancer.   

Lysyl oxidase (LOX) is a fundamental enzyme promoting collagen and elastin stabilization 

and cross-linking. NanoString-based quantitative mRNA/miRNA readouts in human lung 

adenocarcinoma, have shown LOX as a STK11 downstream regulated gene [76]. Defective STK11 

increases LOX activity resulting in remarkable collagen deposition and formation of fibrotic foci in 

lung adenocarcinoma [77] which can be reverted by pharmacological inhibition of LOX enzymatic 

activity [78]. The alteration of ECM homeostasis with STK11 mutations is associated with 

phenotypic plasticity [78] and greater cancer cell proliferation and invasion [77]. Moreover, enhanced 

LOX activity was detected in serum from advanced lung cancer patients, strongly correlating with 

poor clinical outcome. Of note, upregulation of LOX expression by STK11mut also involves mTOR-

HIF-1a pathway further underlining the role of STK11 in tumor angiogenesis, metastases and 

glycolytic metabolism. The close link between STK11 and angiogenesis has been originally 
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documented by the midgestation lethal phenotype associated with vascular abnormalities in 

transgenic mice carrying homozygous inactivating mutation of STK11 [79].  

More recently, the suppressive role of STK11 on angiogenesis was found to be mediated by 

its interaction with the angiogenic receptor neuropilin-1 (NRP-1) [80]. Indeed, STK11 loss of 

function in cancer cells from NSCLC patients unleashes NRP-1 trafficking and fosters its aberrant 

expression. Consistently, an inverse correlation between STK11 and NRP-1 expression was present 

in tumor samples at gene and protein levels [80].  

From a therapeutic perspective, only one clinical observation is available regarding the impact 

of STK11mut on the effectiveness of anti-angiogenic agents. NSCLC patients with negative/weak 

STK11 status did not significantly benefit from the addition of bevacizumab to standard 

chemotherapy. Conversely, among intermediate/high STK11 cases, significantly fewer deaths were 

observed in those receiving bevacizumab [81]. Although the exact contribution of STK11 alterations 

to the sensitivity to antiangiogenic drugs is uncovered, mechanistic insight has been provided in 

STK11-deficient PDX by the evidence of reduced AMPK activation and increased tumor necrosis as 

a result of bevacizumab administration [81]. 

 

4. Clinical implications of STK11 in NSCLC 

STK11mut have been recently proposed as an important regulator of resistance to immune checkpoint 

inhibitors (ICI) in NSCLC (Table 1).



  Table 1. Impact of STK11 mutations upon immunotherapy activity and efficacy in NSCLC patients. 

Cohorts of pts N of pts Clinical setting Treatment ORR mPFS (months) mOS (months) Ref 

STK11mut  
STK11wt 

6 

17 

Stage III – maintenance after 

CCRT (Sq+NonSq) 

Pembrolizumab/durvalumab - 11.3 

17.5  
(p = 0.174) 

- [82] 

MDACC cohort 
STK11mut  
STK11wt 

 

11 
55 

Stage IV, PD-L1 > 1% (NonSq) Anti-PD-1/PD-L1  

0% 
34.5% (p = 0.026) 

 

1.7 
19.3 (p = 0.0012) 

 

11.1 
26.5 (p < 0.0001) 

[25] 

STK11mut 
STK11wt 

31 

96 

Stage IIIB-IV ICI - 

 

5.6 

6.3 (p = 0.35) 

8.6 

12.1 (p = 0.035) 

[83] 

STK11mut 
STK11wt 

6 

26 

Stage IV – 2nd-line (NonSq) Nivolumab - 1.2 

4.8 (p = 0.07) 

11.4 

13.8 (p = 0.5) 

[84] 

STK11mut 
STK11wt 
 
STK11mut 
STK11wt 
 
STK11mut 
STK11wt 

15 
104 

 
6 
57 

 
23 
97 

Stage IV (NonSq) 
 

 
Stage IV - > 3rd-line (NonSq) 
 

 
Stage IV - > 3rd-line (NonSq) 

Durvalumab 
 

 
Durvalumab 
 

 
Durvalumab + tremelimumab 

6% 
16% (X2 = 0.05) 

 
0% 
25% 

 
4% 
25% (X2 = 0.02) 

- 
 

 
- 
 

 
- 

4.9 
14.2 (p = 0.008) 

 
- 
 

 
6.7 
15.6 (p = 0.001) 

[85,8
6] 

 
 
[85,8

7] 
 
 

[85,8
8] 

STK11mut 
STK11wt 1310 

Nonsq ICI - 2.5 

3.1 (p = 0.01) 

- [89] 

STK11mut 
STK11wt 
 
 
STK11mut 
STK11wt 
 
 

STK11mut 
STK11mut 

117 
332 

 
 
137 

122 
 
 

102 
120 

Stage IV – 1st-line (NonSq) 
 

 

CPP 
 

 
 
CP 

 
 
 

CPP 
CP 

32.6% 
44.7% (p = 0.049) 

 
 
- 

 
 
 

- 

4.8 
6.9 (p = 0.0012) 

HR in PD-L1+ 1.73, p=0.016 
 
3.7 

5.6 (p = 0.052) 
HR in PD-L1+ 1.00, p=0.99 
 

4.8 
4.3 (p = 0.75) 

10.6 
16.7 (p = 0.0083) 

 
 
- 

 
 
 

10.6 
10.3 (p = 0.79) 

[90,9
1] 

STK11mut 
STK11wt 
 
STK11mut 
STK11wt 
 
STK11mut 
STK11wt 
 
STK11mut 
STK11wt 

40 

230 
 
111 

559 
 
288 

1849 
 
83 

780 

Stage IV – 1st-line (Sq+NonSq) 

 
 
Stage IV – 2nd-line (Sq+NonSq) 

 
 
Stage IV – 1st-line (Sq+NonSq) 

 
 
Stage IV – 2nd-line (Sq+NonSq) 

ICI 

 
 
ICI 

 
 
Chemotherapy 

 
 
Chemotherapy 

41.2% 

44.5% 
 
24.7% 

34.0% 
 
59.3% 

65.7% 
 
33.3% 

39.1% 

4.0 

4.8 (p = 0.4) 
 
2.2 

3.0 (p = 0.0002) 
 
4.5 

5.8 (p < 0.0001) 
 
4.0 

4.3 (p = 0.7) 

11.2 

17.7 (p = 0.1) 
 
6.3 

12.0 (p = 0.0002) 
 
11.2 

17.8 (p < 0.0001) 
 
11.5 

13.2 (p = 0.7) 

[92] 

6 ICI cohorts 

STK11mut 
STK11wt 
 

807 

 
 
 

Stage IV (Non-sq) 

 
 
 

ICI 

 
 
 

 

RR 0.71, p = 0.251 
 
 

 

HR 1.54, p = 0.002 
 
 

 

HR 1.57, p = 0.003 
 
 

[93] 



1 CT cohort 

STK11mut 
STK11wt 

244 Docetaxel - - HR 1.82, p = 0.006 

STK11mut 
STK11wt 
 
STK11mut 
STK11wt 

32 

272 
 
28 

266 

Stage IV – 2nd/3rd line POPLAR 

and OAK trials (NonSq) 

Atezolizumab 

 
 
Docetaxel 

- 

 
 
- 

- 

 
 
- 

7.3 

15.6 (p = 0.004) 
 
4.8 

10.2 (p = 0.001) 

[94] 

STK11mut 
STK11wt 
 
STK11mut 
STK11wt 
 
STK11mut 
STK11wt 

55 
257 

 
51 
271 

 
41 
268 

Stage IV (Sq+NonSq) Durvalumab 
 

 
Durvalumab + tremelimumab 
 

 
Chemotherapy 

16.7 
25.2 

 
21.6 
23.6 

 
12.2 
33.6 

- 
 

 
- 
 

 
- 

10.3 
13.3 

 
4.4 
11.3 

 
6.7 
13.1 

[95] 

 

Abbreviations: CCRT, concurrent chemo-radiotherapy; CP, platinum-pemetrexed; CPP, pembrolizumab plus platinum-pemetrexed; ICI, immune checkpoint inhibitor; n, number; NonSq, non-

squamous; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; pts, patients; Sq, squamous.  

 

  

 



Skoulidis and collaborators firstly determined STK11mut as a negative predictive factor of 

response to immunotherapy in the clinical setting [25]. The authors found that the presence of 

STK11mut was associated with inferior clinical outcomes to PD-1 blockade in multiple independent 

cohorts of KRASmut NSCLC, including those treated with nivolumab in the CheckMate 057 phase 

III study [25].  In addition, they examined the impact of STK11mut on clinical response to anti-PD-

1/PD-L1 in 66 PD-L1 positive non-squamous (NonSq) NSCLC patients, regardless of KRAS 

mutational status and PD-L1 expression levels. Impressively, none of the patients in the STK11mut 

group responded to ICI compared to 34.5% of the STK11 wild-type (STK11wt) group (p = 0.026), 

despite including PD-L1 high expressing tumors. STK11mut patients had a dramatically shorter 

median progression-free survival (mPFS) and overall survival (mOS) with PD-1 axis blockade (PFS 

Hazard Ratio [HR] 4.76, p = 0.00012; OS HR 14.3, p < 0.0001). This effect was observed across both 

the PD-L1 high (> 50%) and PD-L1 low (PD-L1 < 50%) groups [25].  

The negative influence of STK11mut on ICI response was further confirmed by Biton et al 

[84]. Among different genetic alterations which constituted a tumor immune profile (e.g. EGFRmut, 

TP53mut), STK11mut alone was associated to shorter mPFS in a small cohort of 32 NonSq NSCLC 

patients treated with second-line nivolumab compared to the counterpart [84]. Concordantly, in a 

larger cohort of 1310 ICI treated individuals, mPFS was 2.5 months in  STK11mut patients compared 

to 3.1 months in STK11wt group (p = 0.01) [89]. Jure-Kunkel et al also confirmed the negative impact 

of somatic STK11mut versus STK1wt in advanced Non-Sq NSCLC patients enrolled in two 

independent trials evaluating durvalumab monotherapy (CP1108/ATLANTIC), and in a durvalumab 

plus tremelimumab trial (D4190C00006), both in terms of shorter OS and significantly reduced 

overall response rate (ORR) [85]. Similarly, in exploratory analysis from the phase I/II MYSTIC trial 

evaluating durvalumab +/- tremelimumab in treatment-naïve NSCLC patients, STK11mut patients 

had a significantly shorter OS compared to the wt cohort [95]. Other research groups supported 

STK11mut as marker of poor response to ICI in NSCLC [83], even in the maintenance setting after 

concurrent chemoradiotherapy for stage III disease [82]. Moreover, in different studies STK11mut 

has been associated with hyperprogression to ICI, in terms of an accelerated tumor growth with 

worsening clinical status [96,97].  

Of interest, STK11mut also defined a group of patients with apparently inferior clinical 

outcomes to the chemo-immunotherapy combination with platinum-pemetrexed plus pembrolizumab 

in the first-line setting [90]. Interestingly, in this study, patients who harbored STK11mut did not 

benefit from the addition of pembrolizumab to chemotherapy, both in terms of mPFS (4.8 versus 4.3 

months, HR 1.13, 95% CI 0.83-1.54, p = 0.75) and mOS (10.6 versus 10.3 months, HR 1.03, 95% CI 

0.71 to 1.49, p = 0.79) compared to platinum-pemetrexed alone [90]. Nonetheless, a recent report on 
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patients enrolled in KEYNOTE-189 documented a better outcomes with pembrolizumab plus 

chemotherapy regardless of the presence of STK11 or KEAP1 mutation [98].  

The notion that STK11mut may confer innate resistance to ICI in NSCLC was mainly drawn 

from retrospective studies that lacked the chemotherapy control group. In this regard, different reports 

explored the significance of STK11mut in both ICI and chemotherapy cohorts [92,93,95]. When 

focusing on chemotherapy, patients with STK11mut achieved worse outcomes to different 

chemotherapeutic regimens than STK11wt patients, across different treatment lines, to a similar extent 

for ICI [92,93,95]. In a large real-world cohort of 2137 advanced NSCLC patients treated with 

frontline chemotherapy (65.6% platinum-based), mPFS and mOS were shorter in STK11mut patients 

with regard to STK11wt (mPFS 4.5 versus 5.8 months, HR 1.4 [95% CI, 1.2-1.6], p < 0.0001; mOS 

11.2 versus 17.8 months, HR 1.4 [95% CI, 1.2-1.6], p < 0.0001), with the same detrimental effect 

seen in ICI cohort [92]. When comparing anti-PD-1/PD-L1 efficacy to platinum-based chemotherapy 

in a treatment naïve cohort of 2276 patients, there was no association between STK11mut and both 

mPFS and OS (mPFS anti-PD-1/PD-L1 versus chemo, HR 1.05, 95% CI 0.76-1.44; mOS anti-PD-

1/PD-L1 versus chemo, HR 1.13, 95% CI 0.76-1.67) [99]. Pooling data from POPLAR and OAK 

trials (randomizing pretreated patients to receive either atezolizumab or docetaxel), STK11 status 

confirmed its prognostic role in non-squamous histology. Compared to STK11wt group indeed, 

median estimations of OS in STK11mut were halved in both immunotherapy and chemotherapy 

arms[94]. Moreover, in a recent post-hoc analysis of patients enrolled in IMpower150 study focused 

on KRASmut patients, STK11mut and/or KEAP1mut cohort achieved numerically shorter mPFS and 

mOS than the wt group, regardless of the treatment arm [100]. These results might remodulate the 

value of STK11mut as prognostic rather than predictive factor. However, further prospective research 

is needed to confirm these findings.  

Other retrospective studies tried to assess whether STK11mut negative impact on ICI efficacy 

was either independent or conditioned from KRAS mutational status (Table 2). Shire et collaborators 

found that outcomes of KRASmut/STK11mut patients were similar to those in patients with STK11mut 

only, suggesting no additional deterioration in the double mutants [92]. On the contrary, other reports 

demonstrated that co-mutations in STK11 and KRAS were associated with worse mPFS and mOS than 

STK11mut only patients treated with different regimens, including ICIs [83,101]. Still, a single-center 

retrospective study did not show significant differences in mPFS between STK11mut/KRASmut and 

STK11mut only NSCLC patients, but oppositely – among ICI-treated patients – double mutants 

appeared to have a better prognosis (mOS 20.7 versus 13.6 months, p = 0.049) [102]. Lastly, in a 

retrospective analysis which included 1261 patients treated with ICIs, STK11mut was found to confer 

resistance to ICI in KRASmut but not KRASwt NSCLC patients [103]. 
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Of note, the recent clinical development of KRAS G12C inhibitors (namely sotorasib and 

adagrasib opens new scenarios in the treatment of KRASmut NSCLC. Albeit limited to early evidence, 

STK11 status does not affect negatively affect KRAS G12C inhibition, and STK11 mutations have 

been associated to higher response rates to adegrasib [104,105]. 

The reshaping of TIME by KRAS G12C inhibitors has been documented in preclinical models, and 

the potential impact of STK11 deficiency represents a topic of crucial interest, also in view of 

potential treatment combinations including KRAS targeted agents and immunotherapy [106]. 
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  Table 2. Impact of STK11 mutations upon immunotherapy activity and efficacy in NSCLC patients according to KRAS status. 

Cohorts of pts N of pts Clinical setting Treatment ORR mPFS (months) mOS (months) Ref 

STK11mut 
STK11/KRASmut 
STK11/TP53mut 
STK11/KRAS/TP53mut 

18 

19 
18 
7 

Stage IV – 1st-line (Sq+NonSq) Different treatments (51 

platinum-doublet; 6 targeted-
therapy; 5 ICI) 

- 5.1 (p = 0.048) 

2.4 
4.3 (p = 0.043) 
13.0 (p = 0.03) 

16.1 (p < 0.001) 

7.1 
28.3 (p < 0.001) 
22.0 (p = 0.025) 

[22] 

SKT11mut 
STK11/KRASmut 

37 
36 

Stage IV Different treatments - No differences 11.9 (p = 0.028) 
20.3  
 

Pts receiving ICI 
13.6 (p = 0.049) 
20.7  

[102] 

STK11-KEAP1wt 
STK11-KEAP1mut 
STK11mut 
KEAP1mut 
 
STK11-KEAP1wt 

STK11-KEAP1mut 
STK11mut 
KEAP1mut 

2276 

Stage IV – 1st-line (NonSq) Anti PD-1/PD-L1 
 
 

 
 
Platinum chemotherapy 

- 
 
 

 
 
- 

- 
HR 0.8 [0.48-1.47] 
HR 1.33 [0.93-1.9] 

HR 1.71 [1.2-2.45] 
 
- 

HR 1.07 [0.73-1.57] 
HR 1.32 [1.04-1.68] 
HR 1.53 [1.22-1.93] 

- 
HR 0.88 [0.43-1.81] 
HR 1.43 [0.91-2.26] 

HR 1.71 [1.04-2.81] 
 
- 

HR 0.96 [0.61-1.52] 
HR 1.19 [0.89-1.6] 
HR 1.49 [1.14-1.95] 

[99] 

STK11wt/KEAP1wt 
STK11mut/KEAP1wt 

STK11wt/KEAP1mut 
STK11mut/KEAP1mut 
 
STK11wt/KEAP1wt, PD-L1+ 

STK11mut and/or KEAP1mut, PD-L1+ 

74 
24 

14 
27 
 
- 

Stage IV – 1st-line (NonSq) CPP 44.6% 
33.3% 

28.6% 
7.4% 
 
- 

- 

- 
 

 
 
 
HR 0.36 [0.2-0.65], p = 0.0008 

HR 0.99 [0.59-1.69], p = 0.84 

- 
 

 
 
 
- 

- 

[91] 

DFCI/MGH cohort 
KRASmut/STK11wt 
KRASmut/STK11mut 
 

KRASwt/STK11wt 
KRASwt/STK11mut 
 

MSKCC/MDACC cohort 
KRASmut/STK11wt 
KRASmut/STK11mut 
 
KRASwt/STK11wt 
KRASwt/STK11mut 
 
Combined cohort 
KRASmut/STK11wt 
KRASmut/STK11mut 
 
KRASwt/STK11wt 
KRASwt/STK11mut 

620 

189 
55 
 

320 
56 
 

641 
209 
83 

 
283 
66 

 
1261 
398 

138 
 
603 

122 

Stage IV (NonSq) ICI  

34.9% 
12.7% 
 

20.6% 
25.0% 
 

 
30.1% 
10.8% 

 
17.3% 
22.7% 

 
 
32.4% 

11.6% 
 
19.1% 

23.7% 

 

6.4 
1.8 
 

2.9 
3.2 
 

 
3.6 
2.0 

 
2.7 
2.3 

 
 
4.8 

2.0 
 
2.8 

2.5 

 

19.8 
8.0 
 

11.2 
14.4 
 

 
16.9 
5.9 

 
14.1 
9.1 

 
 
17.3 

6.2 
 
12.4 

13.0 

[107] 

Group 1 166  Stage IV – 1st-line (Sq+NonSq) ICI    [92] 
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KRASmut/STK11mut 
KRASwt/STK11wt 
 
Group 2 
KRASmut/STK11mut 
KRASwt/STK11wt 
 

Group 3 
KRASmut/STK11mut 
KRASwt/STK11wt 
 
Group 4 
KRASmut/STK11mut 
KRASwt/STK11wt 

 

 
 
427 

 
 
 

1493 
 
 

 
650 

 

 
 
Stage IV – 2nd-line (Sq+NonSq) 

 
 
 

Stage IV – 1st-line (Sq+NonSq) 
 
 

 
Stage IV – 2nd-line (Sq+NonSq) 
 

 

 
 
ICI 

 
 
 

Chemotherapy 
 
 

 
Chemotherapy 

- 

 
 
 

- 
 
 

 
- 
 

 
 
- 

4.1 

4.4 
 
 

2.2 
2.8 (p < 0.005) 
 

 
4.5 
5.9 (p < 0.005) 

 
 
4.4 

4.3 

10.0 

16.3 
 
 

6.9 
12.0 (p < 0.005) 
 

 
11.7 
18.2 (p < 0.005) 

 
 
11.3 

13.2 

SU2C cohort 
KRASmut/STK11mut (KL) 

KRASmut/TP53mut (KP) 
KRASmut/STK11wt/TP53wt (K-only) 
 

KRASmut/STK11mut 
KRASmut/STK11wt 
 

CM-057 cohort 
KRASmut/STK11mut (KL) 
KRASmut/TP53mut (KP) 

KRASmut/STK11wt/TP53wt (K-only) 
 
KRASmut/STK11mut 
KRASmut/STK11wt 

 
54 

56 
64 
 

54 
120 
 

 
6 
7 

11 
 
3 

17 

Stage IV (NonSq) 
 

 
 
 

 
 
 

Stage IV – 2nd-line (NonSq) 
 
 

 
 
 

ICI 
 

 
 
 

 
 
 

Nivolumab 
 
 

 
 

 
7.4% 

35.7% 
28.6% (p < 0.001) 
 

- 
 
 

 
0% 
57.1% 

18.2% (p = 0.047) 
 
- 

 
1.8 

3.0 
2.7 (p = 0.0018) 
 

1.8 
2.7 (p < 0.001) 
 

 
2.0 
5.1 

2.1 (p = 0.62) 
 
4.2 

5.5 (p = 0.22) 

 
6.4 

16.0 
16.1 (p = 0.0045) 
 

6.4 
16.0 (p = 0.0015) 
 

 
- 
 

 
 
- 

[25,1
08] 

STK11mut/KRASmut 
STK11mut/KRASwt 

14 
63 

Stage IIIB-IV ICI - 3.0 
5.1 (p = 0.56) 

5.3 
11.4 (p = 0.13) 

[83] 

KRASmut 
 
 

 
KRASwt 
 

 
 
KRASmut/STK11mut and/or KEAP1mut 

 
 
 

KRASmut/STK11wt/KEAP1wt 

80 
74 
71 

 
235 
234 

226 
 
34 

38 
29 
 

46 
36 
42 

Stage IV – 1st-line (NonSq) 
 

ABCP 
ACP 
BCP 

 
ABCP 
ACP 

BCP 
 
ABCP 

ACP 
BCP 
 

ABCP 
ACP 
BCP 

- 
 
 

 
- 
 

 
 
- 

 
 
 

- 

8.1 (HR 0.42) 
4.8 (HR 0.80) 
5.8  

 
8.4 (HR 0.65) 
6.8 (HR 0.82) 

7.0  
 
6.0 (HR 0.49) 

3.2 (HR 0.88) 
3.4  
 

15.2 (HR 0.36) 
7.4 (HR 0.64) 
6.9 

19.8 (0.50) 
11.7 (HR 0.63) 
9.8 

 
18.9 (HR 0.98) 
19.5 (HR 0.90) 

18.2 
 
11.1 (HR 0.60) 

7.9 (HR 0.87) 
8.7 
 

26.2 (HR 0.43) 
21.0 (HR 0.43) 
10.7 

[100,
109] 

Abbreviations: ABCP, atezolizumab, bevacizumab, carboplatin, paclitaxel; ACP, atezolizumab, carboplatin, paclitaxel; BCP, bevacizumab, carboplatin, paclitaxel; CCRT, concurrent chemo-

radiotherapy; CP, platinum-pemetrexed; CPP, pembrolizumab plus platinum-pemetrexed; ICI, immune checkpoint inhibitor; n, number; NonSq, non-squamous; ORR, overall response rate; OS, overall 

survival; PFS, progression-free survival; pts, patients; Sq, squamous. 



5. Summary 

Unveiling the contribution of molecular underpinnings to cancer outcomes and therapeutic response 

is critical to reach the goal of personalized medicine in the current immunotherapy-driven scenario 

of NSCLC treatment. Through its principal substrate AMPK, STK11 acts as master kinase playing a 

crucial role in basic cellular processes, such as metabolism, DNA integrity, proliferation, cell polarity 

and angiogenesis.  

STK11 loss of function is translated in defective networking within the tissue milieu and promotes 

cancer growth, aggressiveness, epithelial-to-mesenchymal transition (EMT) and metastases. 

Moreover, STK11 mutations significantly affect immune cell function and tumor-host immune 

homeostasis, leading to a cold, non-T cell-inflamed, tumor immune microenvironment (TIME).  The 

mechanistic underpinnings of STK11-mediated immune suppressive TIME, featured by low effector 

cells and PD-L1 levels together with increased tumour-associated neutrophils and altered tumour 

cytokine/chemokine composition, mostly reside in epigenetic silencing of stimulator of interferon 

genes (STING).  

Hence, it is conceivable to understand how and to which extent STK11 genomic aberrations, fostering 

the tumor immune escape processes, critically impact on patient outcome and response to 

(immuno)therapy, harbouring a predictive and/or prognostic role that needs to be deciphered. With 

the support of a thorough literature review, STK11 mutations harbors a prognostic rather than 

predictive role in NSCLC patients treated with ICIs. In STK11-deficinent lung tumors, the 

development of novel potential teatment strategies aims at harnessing the immune system to turn 

immune-cold tumors in immune-reactive diseases, eventually improving outcomes of NSCLC 

patients.  
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Figure legend 

 

Figure 1. Schematic representation of STK11mut -driven inhibitory and activating molecular 
pathways. 

The lack of activation of the key substrate AMPK resulting from STK11 deficiency is translated in 
multiple deranged immunomodulatory and stromal signaling consisting of: 

-impaired immune response: through indirect SAM- or direct EZH2 and DNMT1-mediated 
epigenetic silencing of STING.  

-immunosuppressive TIME: through dampening STING-triggered production of cytokines, as 
IFNb, and chemokines (CXCL10, CCL5 and CCL3) which in an autocrine or paracrine fashion can 
activate DCs for antigen presentation, including MHC, and cross-priming of anti-tumor T cells. These 
changes in cytokines and chemokines milieu also result in suppressed PD-L1 expression and reduced 
recruitment of T and B lymphocytes, DCs and TAM. Conversely, STK11 defective mutations 
increases the expression of proinflammatory cytokines/chemokines (IL-1b, IL-6, G-CSF, CXCL7, 
CXCL3 and CXCL5) promoting the recruitment of ARG-1 secreting TAN and expansion of Tregs. 

-angiogenesis and extracellular matrix (ECM) remodelling: disruption of the canonical STK11/ 
AMPK/ TSC 1-2/mTOR/raptor pathway, in addition to alter the metabolic status, activates HIF1a-
mediated angiogenic boost, through VEGF and Ang2, and collagen cross-linking through 
upregulation of LOX. Unleashing of NRP1 and activation of NOX1 are two additional pro-angiogenic 
routes taking place from deregulation of STK11/AMPK axis.  

 

AMPK: Adenosine mono phosphate Activated Protein Kinase; SAM: S-adenosyl methionine; EXH2: 
Enhancer of zeste homolog 2; DNMT1: DNA (cytosine-5)-methyltransferase 1; IFNb: Interferon 
b; DCs: Dendritic Cells; MHC: Major Histocompatibility Complex; PD-L1: Programmed Death 
Ligand-1; TAM: Tumor Associated Macrophages; ARG-1: Arginase-1; G-CSF: Granulocyte-Colony 
Stimulating Factor; TAN: Tumor associated Neutrophil; Treg: T regulatory cell; TSC 1-2: tuberous 
sclerosis complex 1-2; mTOR: mammalian target of rapamycin; HIF1a: Hypoxia Inducible Factor 
a; VEGF: Vascular Endothelial Growth Factor; Ang2: Angiopoietin 2; LOX: Lysil Oxidase; NRP1: 
Neuropilin-1; NOX1: NADPH oxidase 1. 
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