64 research outputs found

    Cloning and Functional Analysis of the MADS-box CiMADS9 Gene from Carya illinoinensis

    Get PDF
    AbstractA MADS-box gene, CiMADS9, was cloned from the male flowers of Carya illinoinensis by rapid amplification of cDNA ends. The gene was 1 077bp with a 768bp open reading frame encoding 255 amino acids. Multiple sequence comparisons revealed that CiMADS9 is a typical MIKC-type MADS-box gene with a MADS-box domain and a K semi-conserved region. Phylogenetic analysis indicated that CiMADS9 belongs to the AGL15 group of the MADS-box gene family. Quantitative reverse transcription polymerase chain reaction analysis indicated that the expression levels in reproductive organs (i.e., flowers and young fruits) were considerably higher than in vegetative tissues (i.e., leaves and branches). The highest expression levels were observed in male flowers. An overexpression vector for CiMADS9 was constructed and the gene was inserted into the Arabidopsis thaliana genome. CiMADS9 expression was confirmed in all transgenic lines. Compared with wild-type plants, transgenic A. thaliana plants overexpressing CiMADS9 exhibited delayed flowering and an increased number of leaves

    Genetic Variants of IDE-KIF11-HHEX at 10q23.33 Associated with Type 2 Diabetes Risk: A Fine-Mapping Study in Chinese Population

    Get PDF
    Background: Genome-wide association studies (GWAS) in populations of European ancestry have mapped a type 2 diabetes susceptibility region to chromosome 10q23.33 containing IDE, KIF11 and HHEX genes (IDE-KIF11-HHEX), which has also been replicated in Chinese populations. However, the functional relevance for genetic variants at this locus is still unclear. It is critical to systematically assess the relationship of genetic variants in this region with the risk of type 2 diabetes. Methodology/Principal Findings: A fine-mapping study was conducted by genotyping fourteen tagging single-nucleotide polymorphisms (SNPs) in a 290-kb linkage disequilibrium (LD) region using a two-stage case-control study of type 2 diabetes in a Chinese Han population. Suggestive associations (P,0.05) observed from 1,200 cases and 1,200 controls in the first stage were further replicated in 1,725 cases and 2,081 controls in the second stage. Seven tagging SNPs were consistently associated with type 2 diabetes in both stages (P,0.05), with combined odds ratios (ORs) ranging from 1.14 to 1.33 in the combined analysis. The most significant locus was rs7923837 [OR = 1.33, 95 % confidence interval (CI): 1.21–1.47] at the 39-flanking region of HHEX gene. SNP rs1111875 was found to be another partially independent locus (OR = 1.23, 95% CI: 1.13–1.35) in this region that was associated with type 2 diabetes risk. A cumulative effect of rs7923837 and rs1111875 was observed with individuals carrying 1, 2, and 3 or 4 risk alleles having a 1.27, 1.44, and 1.73-fold increased risk, respectively, for type 2 diabetes (P for trend = 4.1E-10)

    Concordance between microsatellite instability and mismatch repair protein expression in colorectal cancer and their clinicopathological characteristics: a retrospective analysis of 502 cases

    Get PDF
    Microsatellite instability (MSI) is one of the hallmarks of colorectal cancer (CRC). Mismatch repair (MMR) protein expression may reflect MSI status. To analyze the concordance between MSI and MMR expression in CRC and their clinicopathological characteristics, 502 CRC patients were retrospectively collected in this study. Polymerase chain reaction-capillary electrophoresis (PCR-CE) was used to measure MSI, and MMR expression was determined by immunohistochemistry (IHC). The causes of non-concordance were analyzed. Chi-square test was used to find the correlation between MSI and various clinicopathological parameters. PCR-CE results showed 64 (12.7%) patients had high microsatellite instability (MSI-H); low microsatellite instability (MSI-L) and microsatellite stable (MSS) cases were 19 (3.8%)and 419 (83.5%), respectively. With regard to IHC, 430 (85.7%) showed proficient mismatch repair (pMMR) and 72 (14.3%) showed deficient mismatch repair (dMMR). The coincidence rate of MSI and MMR expression in CRC was 98.4% (494/502), with good concordance (Kappa = 0.932). Using PCR-CE as the gold standard, the sensitivity, specificity, positive predictive value, and negative predictive value of IHC were 100%, 98.2%, 88.9%, and 100%, respectively. MSI-H was more common in women, right colon, tumors ≥ 5 cm, ulcerative type, mucinous adenocarcinoma, poor differentiation, T stage I/II, and without lymph node or distant metastasis for CRC patients. In summary, MSI exhibited some typical clinicopathological characteristics. MSI and MMR expression in CRC had good concordance. However, it is still extremely necessary to perform PCR-CE. We recommend that testing packages of different sizes should be developed in clinical practice to create a testing echelon, to facilitate comprehensive selection according to experimental conditions, clinical diagnosis, and treatment needs

    Effects of different soil water holding capacities on vegetable residue return and its microbiological mechanism

    Get PDF
    With the gradual expansion of the protected vegetable planting area, dense planting stubbles and increasing labor cost, the treatment of vegetable residues has become an urgent problem to be solved. Soil bacterial community structure plays an important role in vegetable residue return and is susceptible to environmental changes. Therefore, understanding the influences of different soil water holding capacities on plant residue decomposition and soil bacterial communities is important for biodegradation. During the whole incubation period, the weight loss ratio of plant residue with 100% water holding capacity was 69.60 to 75.27%, which was significantly higher than that with 60% water holding capacity in clay and sandy soil, indicating that high water holding capacity promoted the decomposition of plant residue. The degradation of lignin and cellulose was also promoted within 14 days. Furthermore, with the increase in soil water holding capacity, the contents of NH4+ increased to 5.36 and 4.54 times the initial value in the clay and sandy soil, respectively. The increase in napA and nrfA resulted in the conversion of NO3– into NH4+. The increase in water holding capacity made the bacterial network structure more compact and changed the keystone bacteria. The increase in water holding capacity also increased the relative abundance of Firmicutes at the phylum level and Symbiobacterium, Clostridium at the genus level, which are all involved in lignin and cellulose degradation and might promote their degradation. Overall, these findings provide new insight into the effects of different soil water holding capacities on the degradation of plant residues in situ and the corresponding bacterial mechanisms

    A long-term cohort study: the immune evasion and decreasing neutralization dominated the SARS-CoV-2 breakthrough infection

    Get PDF
    Most of vaccinees and COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, which helps preventing infection and alleviating symptoms. However, breakthrough viral infections caused by emerging SARS-CoV-2 variants, especially Omicron subvariants, still pose a serious threat to global health. By monitoring the viral infections and the sera neutralization ability of a long-tracked cohort, we found out that the immune evasion of emerging Omicron subvariants and the decreasing neutralization led to the mini-wave of SARS-CoV-2 breakthrough infections. Meanwhile, no significant difference had been found in the infectivity of tested SARS-CoV-2 variants, even though the affinity between human angiotensin-converting enzyme 2 (hACE2) and receptor-binding domain (RBDs) of tested variants showed an increasing trend. Notably, the immune imprinting of inactivated COVID-19 vaccine can be relieved by infections of BA.5.2 and XBB.1.5 variants sequentially. Our data reveal the rising reinfection risk of immune evasion variants like Omicron JN.1 in China, suggesting the importance of booster with updated vaccines

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Big Country, Little Creativity - Creativity Research: A Rising Star in China

    Get PDF
    • …
    corecore