496 research outputs found

    Inhibitory effect of silver diamine fluoride on dentine demineralisation and collagen degradation

    Get PDF
    Objective To investigate the inhibitory effects of 38% silver diamine fluoride (SDF) on demineralised dentine. Methods Human dentine blocks were demineralised and allocated to four groups: SF, F, S and W. The blocks in group SF received a topical application of 38% SDF solution (253,900 ppm Ag, 44,800 ppm F), group F received a 10% sodium fluoride solution (44,800 ppm F), group S received a 42% silver nitrate solution (253,900 ppm Ag) and group W received deionised water (control). They were subjected to pH cycling using demineralisation solution (pH 5) and remineralisation solution (pH 7) for 8 days. The surface morphology, crystal characteristics, lesion depth and collagen matrix degradation of the specimens were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-CT testing and spectrophotometry with a hydroxyproline assay. Results The surface morphology under SEM showed evident demineralisation with exposed collagen in groups S and W, but not in group SF. Clusters of granular spherical grains were observed in the cross-sections of specimens in groups SF and F. XRD revealed precipitates of silver chloride in groups SF and S. The mean lesion depths (±SD) of groups SF, F, S and W were 182 ± 32 μm, 204 ± 26 μm, 259 ± 42 μm and 265 ± 40 μm, respectively (SDF, F < S, W; p < 0.01). Groups SF and S had significantly less hydroxyproline liberated from the dentine matrix than groups F and W (p < 0.01). Conclusion The use of 38% SDF inhibited demineralisation and preserved collagen from degradation in demineralised dentine. Clinical significance SDF application positively influences dentine remineralization

    An ex vivo study of arrested primary teeth caries with silver diamine fluoride therapy

    Get PDF
    OBJECTIVES: This ex vivo study compared the physico-chemical structural differences between primary carious teeth biannually treated with silver diamine fluoride (SDF) and carious teeth without such treatment. METHOD: Twelve carious primary upper-central incisors were collected from 6-year-old children. Six teeth had arrested caries after 24-month biannual SDF applications and 6 had active caries when there was no topical fluoride treatment. The mineral density, elemental contents, surface morphology, and crystal characteristics were assessed by micro-computed tomography (micro-CT), energy-dispersive X-ray spectrometry (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). RESULTS: Micro-CT examination revealed a superficial opaque band approximately 150μm on the arrested cavitated dentinal lesion. This band was limited in the active carious lesion. EDX examination detected a higher intensity of calcium and phosphate of 150μm in the surface zone than in the inner zone, but this zone was restricted in the active cavitated dentinal lesion. SEM examination indicated that the collagens were protected from being exposed in the arrested cavitated dentinal lesion, but were exposed in the active cavitated dentinal lesion. TEM examination suggested that remineralised hydroxyapatites were well aligned in the arrested cavitated dentinal lesion, while those in the active cavitated dentinal lesion indicated a random apatite arrangement. CONCLUSIONS: A highly remineralised zone rich in calcium and phosphate was found on the arrested cavitated dentinal lesion of primary teeth with an SDF application. The collagens were protected from being exposed in the arrested cavitated dentinal lesion. CLINICAL SIGNIFICANCE: Clinical SDF application positively influences dentine remineralisation.link_to_OA_fulltex

    Intraoperative device closure of perimembranous ventricular septal defects in the young children under transthoracic echocardiographic guidance; initial experience

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>This study aimed to assess the safety and feasibility of intraoperative device closure of perimembranous ventricular septal defects (VSD) in young children guided by transthoracic echocardiography (TTE).</p> <p>Methods</p> <p>We enrolled 18 patients from our hospital to participate in the study from June 2011 to September 2011. A minimal inferior median incision was performed after full evaluation of the perimembranous VSD by real-time TTE, and a domestically made device was inserted to occlude the perimembranous VSD. The proper size of the device was determined by means of transthoracic echocardiographic analysis.</p> <p>Results</p> <p>Implantation was ultimately successful in 16 patients using TTE guidance. In these cases, the complete closure rate immediately following the operation and on subsequent follow-up was 100%. Symmetric devices were used in 14 patients, and asymmetric devices were used in two patients. Two patient were transformed to surgical treatment, one for significant residual shunting, and the other for unsuccessful wire penetration of the VSD. The follow-up periods were less than nine months, and only one patient had mild aortic regurgitation. There were no instances of residual shunt, noticeable aortic regurgitation, significant arrhythmia, thrombosis, or device failure.</p> <p>Conclusions</p> <p>Minimally invasive transthoracic device closure of perimembranous VSDs is safe and feasible, using a domestically made device under transthoracic echocardiographic guidance, without the need for cardiopulmonary bypass. This technique should be considered an acceptable alternative to surgery or device closure guided by transesophageal echocardiography in selected young children. However, a long-term evaluation of outcomes is necessary.</p

    Inhibitors of apoptosis proteins in human cervical cancer

    Get PDF
    BACKGROUND: It has been shown that IAPs, in particular XIAP, survivin and c-IAP1, are overexpressed in several malignancies. In the present study we investigate the expression of c-IAP1, c-IAP2, XIAP and survivin and its isoforms in cervical cancer. METHODS: We used semiquantitative RT-PCR assays to analyze 41 cancer and 6 normal tissues. The study included 8 stage I cases; 16 stage II; 17 stageIII; and a control group of 6 samples of normal cervical squamous epithelial tissue. RESULTS: c-IAP2 and XIAP mRNA levels were similar among the samples, cervical tumors had lower c-IAP1 mRNA levels. Unexpectedly, a clear positive association was found between low levels of XIAP and disease relapse. A log-rank test showed a significant inverse association (p = 0.02) between XIAP expression and tumor aggressiveness, as indicated by disease relapse rates. There were no statistically significant differences in the presence or expression levels of c-IAP1 and c-IAP2 among any of the clinical variables studied. Survivin and its isoforms were undetectable in normal cervical tissues, in contrast with the clear upregulation observed in cancer samples. We found no association between survivin expression and age, clinical stage, histology or menopausal state. Nevertheless, we found that adenocarcinoma tumors expressed higher levels of survivin 2B and DeltaEx3 (p = 0.001 and p = 0.04 respectively, by Kruskal-Wallis). A multivariate Cox's partial likelihood-based analysis showed that only FIGO stage was an independent predictor of outcome. CONCLUSION: There are no differences in the expression of c-IAP2 and XIAP between normal vs. cancer samples, but XIAP expression correlate in cervical cancer with relapse of this disease in the patients. Otherwise, c-IAP1 was downregulated in the cervical cancer samples. The expression of survivin was upregulated in the patients with cervical cancer. We have found that adenocarcinoma presented higher levels of survivin isoforms 2B and DeltaEx3

    Synthesis of Novel Flower-Like Zn(OH)F via a Microwave-Assisted Ionic Liquid Route and Transformation into Nanoporous ZnO by Heat Treatment

    Get PDF
    Zinc hydroxide fluoride (Zn(OH)F) with novel flower-like morphology has been prepared via a microwave-assisted ionic liquid route. The flower-like Zn(OH)F particle has six petals and every petal is composed of lots of acicular nano-structure. Nanoporous ZnO is obtained by thermal decomposition of as-prepared Zn(OH)F in air, and the flower-like morphology is well retained. In the process of synthesis, ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate is used as both the reactant and the template

    Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract – possible synergistic and resistance mechanisms

    Get PDF
    Artemisia annua hot water infusion (tea) has been used in in vitro experiments against P. falciparum malaria parasites to test potency relative to equivalent pure artemisinin. High performance liquid chromatography (HPLC) and mass spectrometric analyses were employed to determine the metabolite profile of tea including the concentrations of artemisinin (47.5±0.8 mg L-1), dihydroartemisinic acid (70.0±0.3 mg L-1), arteannuin B (1.3±0.0 mg L-1), isovitexin (105.0±7.2 mg L-1) and a range of polyphenolic acids. The tea extract, purified compounds from the extract, and the combination of artemisinin with the purified compounds were tested against chloroquine sensitive and chloroquine resistant strains of P. falciparum using the DNA-intercalative SYBR Green I assay. The results of these in vitro tests and of isobologram analyses of combination effects showed mild to strong antagonistic interactions between artemisinin and the compounds (9-epi-artemisinin and artemisitene) extracted from A. annua with significant (IC50 <1 μM) anti-plasmodial activities for the combination range evaluated. Mono-caffeoylquinic acids, tri-caffeoylquinic acid, artemisinic acid and arteannuin B showed additive interaction while rosmarinic acid showed synergistic interaction with artemisinin in the chloroquine sensitive strain at a combination ratio of 1:3 (artemisinin to purified compound). In the chloroquine resistant parasite, using the same ratio, these compounds strongly antagonised artemisinin anti-plasmodial activity with the exception of arteannuin B, which was synergistic. This result would suggest a mechanism targeting parasite resistance defenses for arteannuin B’s potentiation of artemisinin

    Histone H2A Mono-Ubiquitination Is a Crucial Step to Mediate PRC1-Dependent Repression of Developmental Genes to Maintain ES Cell Identity

    Get PDF
    Two distinct Polycomb complexes, PRC1 and PRC2, collaborate to maintain epigenetic repression of key developmental loci in embryonic stem cells (ESCs). PRC1 and PRC2 have histone modifying activities, catalyzing mono-ubiquitination of histone H2A (H2AK119u1) and trimethylation of H3 lysine 27 (H3K27me3), respectively. Compared to H3K27me3, localization and the role of H2AK119u1 are not fully understood in ESCs. Here we present genome-wide H2AK119u1 maps in ESCs and identify a group of genes at which H2AK119u1 is deposited in a Ring1-dependent manner. These genes are a distinctive subset of genes with H3K27me3 enrichment and are the central targets of Polycomb silencing that are required to maintain ESC identity. We further show that the H2A ubiquitination activity of PRC1 is dispensable for its target binding and its activity to compact chromatin at Hox loci, but is indispensable for efficient repression of target genes and thereby ESC maintenance. These data demonstrate that multiple effector mechanisms including H2A ubiquitination and chromatin compaction combine to mediate PRC1-dependent repression of genes that are crucial for the maintenance of ESC identity. Utilization of these diverse effector mechanisms might provide a means to maintain a repressive state that is robust yet highly responsive to developmental cues during ES cell self-renewal and differentiation

    Human Neural Stem Cells Differentiate and Promote Locomotor Recovery in an Early Chronic Spinal coRd Injury NOD-scid Mouse Model

    Get PDF
    Traumatic spinal cord injury (SCI) results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns) were prospectively isolated based on fluorescence-activated cell sorting for a CD133(+) and CD24(-/lo) population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery.hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein.The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the "window of opportunity" for intervention
    corecore