86 research outputs found

    A century of morphological variation in Cyprinidae fishes

    Get PDF
    Background Aquatic habitats have been altered over the past century due to a variety of anthropogenic influences. Ecomorphology is an area of aquatic ecology that can both directly and indirectly assess the effects of habitat alterations on organisms. However, few studies have explored long term trends in morphological variation. Long term changes in morphology can potentially impact niche and ultimately contribute to organismal success and the ecosystem. Therefore, in this study we assessed long term morphological variation with body size, sex, time, and hydrology using museum collections of five species of Cyprinidae (Minnows) from lentic and lotic systems over the past 100 years to gain insight into long term patterns in morphology. Results Variation in Cyprinidae morphology tended to relate to: body size—indicating strong allometric growth patterns with robustness of larger individuals; sex—indicating a level of fecundity selection for deeper bodies in females compared with males; and year—indirectly suggesting responses to habitat changes over the past century. In lotic ecosystems, Cyprinidae morphology tended to be more fusiform in conjunction with lower mean annual discharge or higher variation in discharge. In lentic ecosystems, change in morphology was observed but no historic habitat variables were available to discern potential mechanisms. Interestingly, not all species responded in the same magnitude or directionality. Conclusions Long term changes in morphological variation provide a link to exploring functional relationships between taxa and their environment and have implications for understanding ecosystem attributes, community assembly patterns, and conservation

    Morphological Variation of Rusty Crayfish Orconectes rusticus (Cambaridae) with Gender and Local Scale Spatial Gradients

    Get PDF
    We tested for the influence of gender, stream, and urbanization on morphological variation in rusty crayfish (Orconectes rusticus) in an east-central Indiana, US watershed. We used geometric morphometrics to characterize shape and tested for differences among and within sites. Males had shallower rostrum, increased head width and length, decreased abdomen and cephalothorax width and length, and increased telson length compared to females. Morphology of males did not vary with stream or along an urban gradient. The morphology of females varied with stream and along an urban gradient. Female shapes from small creek sites were stouter and less fusiform than larger river specimens. Following an urban gradient, females exhibited an increasingly reduced abdominal and telson area and a more fusiform rostrum. Morphological variation is linked with adaptation and subsequent success of aquatic taxa. Disentangling the potential influences on crayfish morphology has implications for improved understanding of ecosystem structure and conservation

    Habitat Variation among Aquatic Gastropod Assemblages of Indiana, U.S.A.

    Get PDF
    We collected aquatic gastropods at 137 sites in lakes and streams of Indiana and tested for patterns of assemblages with environmental variables. The survey resulted in 32 species with a mean of 2.8 species at each site, and a mean abundance at each site of 144 individuals. Nonmetric multidimensional scaling (NMS) multivariate analyses resulted in watershed drainage area, water conductivity, substrate category frequency, and dissolved oxygen as significant correlates of gastropod assemblage structure. Gastropod assemblages of lakes were not significantly different than assemblages of streams in the ordination. Prosobranch taxa occurred in higher abundances than pulmonate taxa at sites with lower conductivity in larger watersheds. There were no pairs of gastropod species that tended to co-occur more frequently than random. Our analyses resulted in local environmental variables providing explanation of aquatic gastropod assemblage structure

    Geomorphology variables predict fish assemblages for forested and endorheic rivers of two continents

    Get PDF
    Stream fishes are restricted to specific environments with appropriate habitats for feeding and reproduction. Interactions between streams and surrounding landscapes influence the availability and type of fish habitat, nutrient concentrations, suspended solids, and substrate composition. Valley width and gradient are geomorphological variables that influence the frequency and intensity that a stream interacts with the surrounding landscape. For example, in constrained valleys, canyon walls are steeply sloped and valleys are narrow, limiting the movement of water into riparian zones. Wide valleys have long, flat floodplains that are inundated with high discharge. We tested for differences in fish assemblages with geomorphology variation among stream sites. We selected rivers in similar forested and endorheic ecoregion types of the United States and Mongolia. Sites where we collected were defined as geomorphologically unique river segments (i.e., functional process zones; FPZs) using an automated ArcGIS-based tool. This tool extracts geomorphic variables at the valley and catchment scales and uses them to cluster stream segments based on their similarity. We collected a representative fish sample from replicates of FPZs. Then, we used constrained ordinations to determine whether river geomorphology could predict fish assemblage variation. Our constrained ordination approach using geomorphology to predict fish assemblages resulted in significance using fish taxonomy and traits in several watersheds. The watersheds where constrained ordinations were not successful were next analyzed with unconstrained ordinations to examine patterns among fish taxonomy and traits with geomorphology variables. Common geomorphology variables as predictors for taxonomic fish assemblages were river gradient, valley width, and valley slope. Significant geomorphology predictors of functional traits were valley width-to-floor width ratio, elevation, gradient, and channel sinuosity. These results provide evidence that fish assemblages respond similarly and strongly to geomorphic variables on two continents

    Aquatic Ecosystems in a Shifting Indiana Climate: A Report from the Indiana Climate Change Impacts Assessment

    Get PDF
    Indiana is home to many types of aquatic ecosystems, including lakes, rivers, streams, wetlands and temporary (ephemeral) pools, which provide habitats for a wide range of plants and animals. These ecosystems will experience changes in water quantity, water temperature, ice cover, water clarity and oxygen content as the state’s temperature and rainfall patterns shift. The plants and animals living in these aquatic ecosystems will undergo changes that will vary based on the species and the specific places they inhabit. It is challenging to know precisely how organisms will respond to changes in climate. Effects on one species create a difficult-to-predict chain reaction that potentially influences other species in the same ecosystem. Some organisms will adapt and evolve to survive, or even thrive, as the climate changes, but they will have to adjust to more than just the changes in climate. They will also respond to changes in a wide variety of other environmental factors that affect them, including invasive species, habitat destruction, contaminants, nutrient runoff, and land management decisions. While these complicated interactions make it challenging to predict the long-term fate of Indiana’s aquatic species, enough is known about climate-related stressors to help managers develop strategies to avoid the most critical outcomes, hopefully avoiding species loss. This report from the Indiana Climate Change Impacts Assessment (IN CCIA) uses climate projections for the state to explore the potential threats to Indiana’s aquatic ecosystems and describes potential management implications and opportunities

    Hydrologic connectivity and land cover affect floodplain lake water quality, fish abundance, and fish diversity in floodplain lakes of the Wabash-White River basin

    Get PDF
    Floodplain lakes are important aquatic resources for supporting ecosystem services, such as organismal habitat, biodiversity, and the retention of nutrients and sediment. Due to geomorphic alteration of river channels and land-cover change, degradation to floodplain lakes in the Ohio River basin is occurring at a rate that will escalate as climate change causes increased flood intensity and the seasonal redistribution of rainfall. A better understanding of the local drivers that affect oxbow lakes is needed for targeted floodplain restoration efforts designed to slow degradation. We examined the effects of land cover, topography, and hydrologic connectivity on water quality and fish diversity and abundance in nine floodplain lakes with potentially high remnant ecological function in the Wabash-White watershed (Indiana, Ohio, and Illinois). Data collection included water-quality parameters; stable water isotopes; total phosphorus, total nitrogen, and chlorophyll-a; and fish community diversity and abundance. Results indicate that hay/pasture land cover and decreased topographic relief in the local oxbow watersheds, along with reduced river hydrologic connectivity, were related to an increase in total phosphorus, total nitrogen, and chlorophyll-a. Greater biodiversity and abundance in fish assemblages were evident in oxbow lakes that were more disconnected from the main channel. The results of this study suggest that hydrologic connectivity of oxbow lakes with the contributing drainage area and the main channel influence nutrients and fish communities. Knowing the influencing factors can help ecosystem managers better protect these valuable floodplain lake ecosystems and prioritize restoration efforts amidst increasing stressors due to climate and land-use changes.Toyota Motor Manufacturing, Indiana, Inc.; Walton Family Foundatio

    Next-generation mitogenomics: A comparison of approaches applied to caecilian amphibian phylogeny

    Get PDF
    Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a 'traditional' Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing platforms (Illumina's HiSeq and MiSeq, Roche's 454 GS FLX, and Life Technologies' Ion Torrent) to produce seven (near-) complete mitogenomes from six species that form a small radiation of caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun sequencing) using the MiSeq platform. Bayesian inference and maximum likelihood analyses using seven different partitioning strategies were unable to resolve compellingly all phylogenetic relationships among the Seychelles caecilian species, indicating the need for additional data in this case

    Multi-tissue transcriptomes of caecilian amphibians highlight incomplete knowledge of vertebrate gene families

    Get PDF
    RNA sequencing (RNA-seq) has become one of the most powerful tools to unravel the genomic basis of biological adaptation & diversity. Although challenging, RNA-seq is particularly promising for research on non-model, secretive species that cannot be observed in nature easily and therefore remain comparatively understudied. Among such animals, the caecilians (order Gymnophiona) likely constitute the least known group of vertebrates, despite being an old and remarkably distinct lineage of amphibians. Here, we characterize multi-tissue transcriptomes for five species of caecilians that represent a broad level of diversity across the order. We identified vertebrate homologous elements of caecilian functional genes of varying tissue specificity that reveal a great number of unclassified gene families, especially for the skin. We annotated several protein domains for those unknown candidate gene families to investigate their function. We also conducted supertree analyses of a phylogenomic dataset of 1,955 candidate orthologous genes among five caecilian species and other major lineages of vertebrates, with the inferred tree being in agreement with current views of vertebrate evolution and systematics. Our study provides insights into the evolution of vertebrate protein-coding genes, and a basis for future research on the molecular elements underlying the particular biology and adaptations of caecilian amphibians
    • …
    corecore