30 research outputs found

    Common polymorphic variation in the genetically diverse African insulin gene and its association with size at birth.

    Get PDF
    The insulin variable number of tandem repeats (INS VNTR) has been variably associated with size at birth in non-African populations. Small size at birth is a major determinant of neonatal mortality, so the INS VNTR may influence survival. We tested the hypothesis, therefore, that genetic variation around the INS VNTR in a rural Gambian population, who experience seasonal variation in nutrition and subsequently birth weight, may be associated with foetal and early growth. Six polymorphisms flanking the INS VNTR were genotyped in over 2,500 people. Significant associations were detected between the maternally inherited SNP 27 (rs689) allele and birth length [effect size 17.5 (5.2-29.8) mm; P = 0.004; n = 361]. Significant associations were also found between the maternally inherited African-specific SNP 28 (rs5506) allele and post-natal weight gain [effect size 0.19 (0.05-0.32) z score points/year; P = 0.005; n = 728). These results suggest that in the Gambian population studied there are associations between polymorphic variation in the genetically diverse INS gene and foetal and early growth characteristics, which contribute to overall polygenic associations with these traits

    Application of real-time PCR to quantify hepatitis B virus DNA in chronic carriers in The Gambia

    Get PDF
    BACKGROUND/AIM: The study aimed at developing a real-time quantitative PCR assay to monitor HBV serum virus load of chronic carriers enrolled in therapeutic trials. METHOD: Quantitative real-time PCR assay was carried out using SYBR-Green signal detection and primers specific to the S gene. Thermal cycling was performed in an ABi 5700 sequence detection system. The assay was calibrated against an international HBV DNA standard and inter- and intra-assay reproducibility determined. Levels of viral load were monitored for 1-year in lamivudine treated carriers. Correlation between HBV DNA levels and HBeAg sero-status was determined in untreated carriers. RESULTS: The qPCR assay showed good intra- and inter-assay reproducibility over a wide dynamic range (1.5 Γ— 10(3 )to 1.5 Γ— 10(8 )copies/mL) and correlated well with those from a commercial assay (r = 0.91, (p < 0.001). Viral load levels dropped dramatically but temporarily during and after a short course of lamivudine therapy. HBV DNA was a more reliable indicator of the presence of virus than HBe antigen and was detected in 77.0% (161/209) of HBeAg negative and in all HBeAg positive carriers. CONCLUSION: This method is reliable, accurate, and reproducible. HBV DNA Quantification by qPCR can be used to monitor the efficacy of HBV therapy and useful in understanding the natural history of HBV in an endemic area

    Interventions for treating children and adolescents with overweight and obesity:An overview of Cochrane reviews

    Get PDF
    Children and adolescents with overweight and obesity are a global health concern. This is an integrative overview of six Cochrane systematic reviews, providing an up-to-date synthesis of the evidence examining interventions for the treatment of children and adolescents with overweight or obesity. The data extraction and quality assessments for each review were conducted by one author and checked by a second. The six high quality reviews provide evidence on the effectiveness of behaviour changing interventions conducted in children <6 years (7 trials), 6-11 years (70 trials), adolescents 12-17 years (44 trials) and interventions that target only parents of children aged 5-11 years (20 trials); in addition to interventions examining surgery (1 trial) and drugs (21 trials). Most of the evidence was derived from high-income countries and published in the last two decades. Collectively, the evidence suggests that multi-component behaviour changing interventions may be beneficial in achieving small reductions in body weight status in children of all ages, with low adverse event occurrence were reported. More research is required to understand which specific intervention components are most effective and in whom, and how best to maintain intervention effects. Evidence from surgical and drug interventions was too limited to make inferences about use and safety, and adverse events were a serious consideration

    Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles.

    Get PDF
    Throughout most of the mammalian genome, genetically regulated developmental programming establishes diverse yet predictable epigenetic states across differentiated cells and tissues. At metastable epialleles (MEs), conversely, epigenotype is established stochastically in the early embryo then maintained in differentiated lineages, resulting in dramatic and systemic interindividual variation in epigenetic regulation. In the mouse, maternal nutrition affects this process, with permanent phenotypic consequences for the offspring. MEs have not previously been identified in humans. Here, using an innovative 2-tissue parallel epigenomic screen, we identified putative MEs in the human genome. In autopsy samples, we showed that DNA methylation at these loci is highly correlated across tissues representing all 3 embryonic germ layer lineages. Monozygotic twin pairs exhibited substantial discordance in DNA methylation at these loci, suggesting that their epigenetic state is established stochastically. We then tested for persistent epigenetic effects of periconceptional nutrition in rural Gambians, who experience dramatic seasonal fluctuations in nutritional status. DNA methylation at MEs was elevated in individuals conceived during the nutritionally challenged rainy season, providing the first evidence of a permanent, systemic effect of periconceptional environment on human epigenotype. At MEs, epigenetic regulation in internal organs and tissues varies among individuals and can be deduced from peripheral blood DNA. MEs should therefore facilitate an improved understanding of the role of interindividual epigenetic variation in human disease

    FTO gene variation and measures of body mass in an African population

    Get PDF
    BACKGROUND: Variation in the fat mass and obesity associated (FTO) gene has been reproducibly associated with body mass index (BMI) and obesity in populations of White European origin. Data from Asians and African-Americans is less conclusive. METHODS: We assessed the effect of 16 FTO polymorphisms on body mass in a large population of predominantly lean Gambians (N(max) 2208) participating in a long-term surveillance program providing contemporary and early-life anthropometric measurements. RESULTS: Sixteen FTO tagSNPs screened here, including several associated with BMI in Europeans, were not associated with birth weight (BWT), early weight gain in 1-2 year olds, BMI in adults (> or = 18 y), or weight-for-height (WFH) z-score across all ages. No association was seen between genotype and WFH z-score or other measures of body mass. The confidence limits indicate that the effect size for WFH z-score never exceeded 0.17 units per allele copy for any SNP (excluding the three SNPs with allele < 15%). with much the lowest allele frequency. The confidence interval of the effect size for rs9939609 did not overlap that reported previously in Europeans. CONCLUSION: To our knowledge this is the first study of FTO gene variation in a well-characterised African population. Our results suggest that FTO gene variation does not influence measures of body mass in Gambians living a traditional lifestyle, or has a smaller effect than that detected in Europeans. These findings are not directly comparable to results from previous studies in African-Americans due to differences in study design and analysis. It is also possible that any effect of FTO genotype on body mass is of limited relevance in a lean population where little excess food is available, compared to similar ethnic populations where food supply is plentiful

    Host Genetic Factors and Vaccine-Induced Immunity to HBV Infection: Haplotype Analysis

    Get PDF
    Hepatitis B virus (HBV) infection remains a significant health burden world-wide, although vaccines help decrease this problem. We previously identified associations of single nucleotide polymorphisms in several candidate genes with vaccine-induced peak antibody level (anti-HBs), which is predictive of long-term vaccine efficacy and protection against infection and persistent carriage; here we report on a haplotype-based analysis. A total of 688 SNPs from 117 genes were examined for a two, three and four sliding window haplotype analysis in a Gambian cohort. Analysis was performed on 197 unrelated individuals, 454 individuals from 174 families, and the combined sample (Nβ€Š=β€Š651). Global and individual haplotype association tests were carried out (adjusted for covariates), employing peak anti-HBs level as outcome. Five genes (CD44, CD58, CDC42, IL19 and IL1R1) had at least one significant haplotype in the unrelated or family analysis as well as the combined analysis. Previous single locus results were confirmed for CD44 (combined global pβ€Š=β€Š9.1Γ—10βˆ’5 for rs353644-rs353630-rs7937602) and CD58 (combined global pβ€Š=β€Š0.008 for rs1414275-rs11588376-rs1016140). Haplotypes in CDC42, IL19 and IL1R1 also associated with peak anti-HBs level. We have identified strong haplotype effects on HBV vaccine-induced antibody level in five genes, three of which, CDC42, IL19 and IL1R1, did not show evidence of association in a single SNP analyses and corroborated the majority of these effects in two datasets. The haplotype analysis identified associations with HBV vaccine-induced immunity in several new genes

    Host Genetic Factors and Vaccine-Induced Immunity to Hepatitis B Virus Infection

    Get PDF
    BACKGROUND: Vaccination against hepatitis B virus infection (HBV) is safe and effective; however, vaccine-induced antibody level wanes over time. Peak vaccine-induced anti-HBs level is directly related to antibody decay, as well as risk of infection and persistent carriage despite vaccination. We investigated the role of host genetic factors in long-term immunity against HBV infection based on peak anti-HBs level and seroconversion to anti-HBc. METHODS: We analyzed 715 SNP across 133 candidate genes in 662 infant vaccinees from The Gambia, assessing peak vaccine-induced anti-HBs level and core antibody (anti-HBc) status, whilst adjusting for covariates. A replication study comprised 43 SNPs in a further 393 individuals. RESULTS: In our initial screen we found variation in IFNG, MAPK8, and IL10RA to affect peak anti-HBs level (GMTratio of 1.5 and P < or = 0.001) and lesser associations in other genes. Odds of core-conversion was associated with variation in CD163. A coding change in ITGAL (R719V) with likely functional relevance showed evidence of association with increased peak anti-HBs level in both screens (1st screen: s595_22 GMTratio 1.71, P = 0.013; 2nd screen: s595_22 GMTratio 2.15, P = 0.011). CONCLUSION: This is to our knowledge the largest study to date assessing genetic determinants of HBV vaccine-induced immunity. We report on associations with anti-HBs level, which is directly related to durability of antibody level and predictive of vaccine efficacy long-term. A coding change in ITGAL, which plays a central role in immune cell interaction, was shown to exert beneficial effects on induction of peak antibody level in response to HBV vaccination. Variation in this gene does not appear to have been studied in relation to immune responses to viral or vaccine challenges previously. Our findings suggest that genetic variation in loci other than the HLA region affect immunity induced by HBV vaccination

    Statistical modelling of the seasonality of preterm delivery and intrauterine growth restriction in rural Gambia.

    No full text
    We have developed a methodology for comparing the seasonal influences on two outcomes, when those influences may act cumulatively or instantaneously. We have used this to compare the seasonal pattern of intrauterine growth retardation (IUGR, as reflected by weight-for-gestational-age) and preterm delivery (as assessed by Dubowitz scoring) among 1718 infants born in rural Gambia. Both outcomes were analysed as binary variables: small-for-gestational-age (SGA, <10th centile of reference standard) and preterm (<37 weeks) respectively. Percentages of preterm and SGA babies show divergent seasonal patterns that might indicate separate aetiologies. However, seasonal effects influencing intrauterine growth are likely to be cumulative over the last few months of pregnancy. By modelling seasonality with truncated Fourier series we were able to deconvolve the underlying seasonal influences on fetal growth from the pattern for SGA. This enabled us to use seemingly unrelated biprobit regression to compare the underlying seasonal pattern of intrauterine growth with that governing the incidence of preterm delivery. We conclude that, if the seasonal factors affecting intrauterine growth operate over more than the last 2 months of pregnancy, then the seasonal patterns of the factors causing IUGR and preterm delivery are indistinguishable if the factors are assumed to trigger preterm delivery immediately, but differ if preterm delivery is assumed to be programmed by factors acting at conception
    corecore