20 research outputs found

    Performance of VAMOS for reactions near the Coulomb barrier

    Get PDF
    Détecteur VAMOSVAMOS (VAriable MOde Spectrometer) is a large solid angle ray-tracing spectrometer employing numerical methods for reconstructing the particle trajectory. Complete identification of reaction products has been achieved by trajectory reconstruction. Equipped with a versatile detection system, VAMOS is capable of identifying reaction products from diverse reactions using beams at GANIL. The technique for trajectory reconstruction and its application for identifying reaction products are presented. The angular acceptance of the spectrometer has been studied using Monte Carlo simulation by an ion optics code. The spectrometer was coupled to the high efficiency EXOGAM γ-array to obtain γ-recoil coincidences for studying nuclei far from stability. The main features of the spectrometer as well as some results applied to experiments in deep inelastic collisions are described

    Improvement in the reconstrution method for VAMOS Spectrometer

    Get PDF
    International audienceThe VAMOS spectrometer operational at GANIL is a large acceptance variable mode spectrometer designed for nuclear reaction studies using radioactive and stable ion beams. The spectrometer coupled with ancillary detectors like EXOGAM has been successfully used in recent experiments on (in)elastic, few nucleon transfer reactions in inverse kinematics and search for nuclei far from stability using deep inelastic transfer reactions In large acceptance spectrometers, the experimental resolution is worsened by aberrations of third and higher orders. Hardware corrections are limited and cannot completely correct the non-linear effects. Thus software reconstruction of trajectories (ray tracing) is essential to obtain the required resolution and identification of the products. A numerical method has been developed for reconstruction of ion trajectories and correction of aberrations in VAMOS. We have devised a procedure to select an optimum subset of closest trajectories for each focal plane event (x, θ, y, ϕ) from the database (generated by an ion-optics calculation). A polynomial fit to the momentum vector of the reaction product in terms of (x, θ, y, ϕ) is made only to this subset. Such an approach is found to give improved resolutions compared to fitting a single polynomial over the entire phase space. Extraction of charge state and angular distributions are rather difficult due to the variation of acceptance over the large phase space. Mass identification of the reaction products and characteristics of the spectrometer acceptance with its variation for different rigidities have been obtained. Applications to 238U+48Ca and 238U+58Ni systems at 5.5 MeV/u will be presented

    Performance of the improved larger acceptance spectrometer: VAMOS++

    Get PDF
    International audienceMeasurements and ion optic calculations showed that the large momentum acceptance of the VAMOS spectrometer at GANIL could be further increased from \sim 11% to \sim 30% by suitably enlarging the dimensions of the detectors used at the focal plane. Such a new detection system built for the focal plane of VAMOS is described. It consists of larger area detectors (1000 mm × 150 mm) namely, a Multi-Wire Parallel Plate Avalanche Counter (MWPPAC), two drift chambers, a segmented ionization chamber and an array of Si detectors. Compared to the earlier existing system (VAMOS), we show that the new system (VAMOS++) has a dispersion-independent momentum acceptance . Additionally a start detector (MWPPAC) has been introduced near the target to further improve the mass resolution to \sim 1/220. The performance of the VAMOS++ spectrometer is demonstrated using measurements of residues formed in the collisions of 129Xe at 967 MeV on 197Au

    Nuclear Fission: : A Review of Experimental Advances and Phenomenology

    Get PDF
    In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies.
 This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams.
 The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed.
 A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion-fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around <sup>180</sup>Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined.
 The unprecedented high-quality data for fission fragments, completely identified in <i>Z</i> and <i>A</i>, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions.
 Some aspects of heavy-ion induced fusion-fission and quasifission reactions will be also discussed, which reveal their dynamical features, such as the fission time scale. The crucial role of the multi-chance fission, probed by means of multinucleon-transfer induced fission reactions, will be highlighted.
 The review will conclude with the discussion of the new experimental fission facilities which are presently being brought into operation, along with promising 'next-generation' fission approaches, which might become available within the next decade

    N/Z influence on the level density parameter

    No full text
    A completely exclusive experiment was performed by the INDRA collaboration to study the isospin dependence of the level density parameter.Over a large N/Z range, the fusion-evaporation chargedproducts of 34,36,40Ar+58,60,64Ni reactions were measured and identifiedboth in charge and mass by coupling INDRA and VAMOS spectrometer.Preliminary results obtained by combining data of bothdetectors are presented for the 36Ar+58Ni at 13.3 AMeV. The analysismethod of relevant observables for such an ambitious investigationare discussed and the progress of the data analysis are reviewed
    corecore