2,634 research outputs found
Radiation tolerance studies of silicon microstrip sensors for the CBM Silicon Tracking System
Double-sided silicon microstrip sensors will be used in the Silicon Tracking System of the CBM experiment. During experimental run they will be exposed to a radiation field of up to 1x1014 1 MeV neq cm-2. Radiation tolerance studies were made on prototypes from two different vendors. Results from these prototype detectors before and after irradiation to twice that neutron fluence are discussed
Metal micro-detectors: development of “transparent” position sensitive detector for beam diagnostics
Metal Micro-strip Detector (MMD) represents a novel position sensitive detector for wide range of applications. The main advantages of MMD are low thickness, high radiation resistance and high spatial resolution. MMD production technology includes some stages: micro-strip layout made by photo-lithography on silicon wafer, plasma-chemistry etching of the silicon wafer in the operating window, micro-cabling connection to the readout electronics and DAQ. Commercially available read-out systems (VA_SCM3 microchip preamplifier, Time Pix readout chip, Gotthard, X-DAS) have been studied for use with MMD. Characterization studies of the MMD are presented in details.Металлический микростриповый детектор (ММД) представляет собой новый позиционно- чувствительный детектор для широкого спектра применений. Основные преимущества ММД: малая толщина, высокая радиационная стойкость, высокое пространственное разрешение. Технология производства ММД включает в себя несколько этапов: микростриповая структура создается при помощи фотолитографии на кремниевой пластине, плазмо-химическое травление кремниевой пластины в рабочем окне, подключение микро-кабелем к считывающей электронике. Коммерчески доступные системы считывания и обработки данных (VA_SCM3, TimePix, Gotthard, X-DAS) были изучены для использования с ММД. Представлены результаты исследований MMD на пучках разных частиц.Металевий мікростріповий детектор (ММД) являє собою новий позиційно-чутливий детектор для широкого спектру застосувань. Основні переваги ММД: мала товщина, висока радіаційна стійкість, висока просторова роздільна здатність. Технологія виробництва ММД включає в себе кілька етапів: мікростріпова структура створюється за допомогою фотолітографії на кремнієвій пластині, плазмо-хімічне травлення кремнієвої пластини в робочому вікні, підключення мікро-кабелем до зчитуючої електроніки. Комерційно доступні системи зчитування й обробки даних (VA_SCM3, TimePix, Gotthard, X-DAS) були вивчені для використання з ММД. Представлено результати дослідження MMD на пучках різних частинок
Theory of Thermal Motion in Electromagnetically Induced Transparency: Diffusion, Doppler, Dicke and Ramsey
We present a theoretical model for electromagnetically induced transparency
(EIT) in vapor, that incorporates atomic motion and velocity-changing
collisions into the dynamics of the density-matrix distribution. Within a
unified formalism we demonstrate various motional effects, known for EIT in
vapor: Doppler-broadening of the absorption spectrum; Dicke-narrowing and
time-of-flight broadening of the transmission window for a finite-sized probe;
Diffusion of atomic coherence during storage of light and diffusion of the
light-matter excitation during slow-light propagation; and Ramsey-narrowing of
the spectrum for a probe and pump beams of finite-size.Comment: Reference added, typos correcte
Proceedings of the third French-Ukrainian workshop on the instrumentation developments for HEP
The reports collected in these proceedings have been presented in the third
French-Ukrainian workshop on the instrumentation developments for high-energy
physics held at LAL, Orsay on October 15-16. The workshop was conducted in the
scope of the IDEATE International Associated Laboratory (LIA). Joint
developments between French and Ukrainian laboratories and universities as well
as new proposals have been discussed. The main topics of the papers presented
in the Proceedings are developments for accelerator and beam monitoring,
detector developments, joint developments for large-scale high-energy and
astroparticle physics projects, medical applications.Comment: 3rd French-Ukrainian workshop on the instrumentation developments for
High Energy Physics, October 15-16, 2015, LAL, Orsay, France, 94 page
Mean-field phase diagram of disordered bosons in a lattice at non-zero temperature
Bosons in a periodic lattice with on-site disorder at low but non-zero
temperature are considered within a mean-field theory. The criteria used for
the definition of the superfluid, Mott insulator and Bose glass are analysed.
Since the compressibility does never vanish at non-zero temperature, it can not
be used as a general criterium. We show that the phases are unambiguously
distinguished by the superfluid density and the density of states of the
low-energy exitations. The phase diagram of the system is calculated. It is
shown that even a tiny temperature leads to a significant shift of the boundary
between the Bose glass and superfluid
Numerical study of one-dimensional and interacting Bose-Einstein condensates in a random potential
We present a detailed numerical study of the effect of a disordered potential
on a confined one-dimensional Bose-Einstein condensate, in the framework of a
mean-field description. For repulsive interactions, we consider the
Thomas-Fermi and Gaussian limits and for attractive interactions the behavior
of soliton solutions. We find that the disorder average spatial extension of
the stationary density profile decreases with an increasing strength of the
disordered potential both for repulsive and attractive interactions among
bosons. In the Thomas Fermi limit, the suppression of transport is accompanied
by a strong localization of the bosons around the state k=0 in momentum space.
The time dependent density profiles differ considerably in the cases we have
considered. For attractive Bose-Einstein condensates, a bright soliton exists
with an overall unchanged shape, but a disorder dependent width. For weak
disorder, the soliton moves on and for a stronger disorder, it bounces back and
forth between high potential barriers.Comment: 13 pages, 13 figures, few typos correcte
Analysis of Localization Phenomena in Weakly Interacting Disordered Lattice Gases
Disorder plays a crucial role in many systems particularly in solid state
physics. However, the disorder in a particular system can usually not be chosen
or controlled. We show that the unique control available for ultracold atomic
gases may be used for the production and observation of disordered quantum
degenerate gases. A detailed analysis of localization effects for two possible
realizations of a disordered potential is presented. In a theoretical analysis
clear localization effects are observed when a superlattice is used to provide
a quasiperiodic disorder. The effects of localization are analyzed by
investigating the superfluid fraction and the localization length within the
system. The theoretical analysis in this paper paves a clear path for the
future observation of Anderson-like localization in disordered quantum gases.Comment: 9 pages, 13 figure
RMS-R3 – the system for monitoring the region of interactions and background at the LHCB experiment (CERN)
The upgraded Large Hadron Collider beauty (LHCb) detector will provide data taken in Run3 at the instantaneous luminosity of proton-proton collisions increased to 2⋅1033 cm-2s-1 at energies of up to 14 TeV. To ensure the safe operation of the experiment, a new beam and background Radiation Monitoring System (RMS-R3) was built. RMS-R3 is based on metal-foil detector technology developed at the Institute for Nuclear Research, National Academy of Sciences of Ukraine (Kyiv, Ukraine). The system comprises four detector modules with two sensors in each. Their frequency response is proportional to the flux of incident charged particles. The modules are located around the beam pipe at a distance of 2.2 m from the interaction point. The results measured during the Run3 in 2022 testify to the reliable operation of the system. Applying the asymmetry method, high-accuracy data were obtained on the localization of the interactions region and the beam and background contribution
- …