47 research outputs found

    A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-1–Human Protein Interactions

    Get PDF
    Identification of potential viral-host protein interactions is a vital and useful approach towards development of new drugs targeting those interactions. In recent days, computational tools are being utilized for predicting viral-host interactions. Recently a database containing records of experimentally validated interactions between a set of HIV-1 proteins and a set of human proteins has been published. The problem of predicting new interactions based on this database is usually posed as a classification problem. However, posing the problem as a classification one suffers from the lack of biologically validated negative interactions. Therefore it will be beneficial to use the existing database for predicting new viral-host interactions without the need of negative samples. Motivated by this, in this article, the HIV-1–human protein interaction database has been analyzed using association rule mining. The main objective is to identify a set of association rules both among the HIV-1 proteins and among the human proteins, and use these rules for predicting new interactions. In this regard, a novel association rule mining technique based on biclustering has been proposed for discovering frequent closed itemsets followed by the association rules from the adjacency matrix of the HIV-1–human interaction network. Novel HIV-1–human interactions have been predicted based on the discovered association rules and tested for biological significance. For validation of the predicted new interactions, gene ontology-based and pathway-based studies have been performed. These studies show that the human proteins which are predicted to interact with a particular viral protein share many common biological activities. Moreover, literature survey has been used for validation purpose to identify some predicted interactions that are already validated experimentally but not present in the database. Comparison with other prediction methods is also discussed

    Effects of Multimodal Load on Spatial Monitoring as Revealed by ERPs

    Get PDF
    While the role of selective attention in filtering out irrelevant information has been extensively studied, its characteristics and neural underpinnings when multiple environmental stimuli have to be processed in parallel are much less known. Building upon a dual-task paradigm that induced spatial awareness deficits for contralesional hemispace in right hemisphere-damaged patients, we investigated the electrophysiological correlates of multimodal load during spatial monitoring in healthy participants. The position of appearance of briefly presented, lateralized targets had to be reported either in isolation (single task) or together with a concurrent task, visual or auditory, which recruited additional attentional resources (dual-task). This top-down manipulation of attentional load, without any change of the sensory stimulation, modulated the amplitude of the first positive ERP response (P1) and shifted its neural generators, with a suppression of the signal in the early visual areas during both visual and auditory dual tasks. Furthermore, later N2 contralateral components elicited by left targets were particularly influenced by the concurrent visual task and were related to increased activation of the supramarginal gyrus. These results suggest that the right hemisphere is particularly affected by load manipulations, and confirm its crucial role in subtending automatic orienting of spatial attention and in monitoring both hemispaces

    Embryonic Diapause Is Conserved across Mammals

    Get PDF
    Embryonic diapause (ED) is a temporary arrest of embryo development and is characterized by delayed implantation in the uterus. ED occurs in blastocysts of less than 2% of mammalian species, including the mouse (Mus musculus). If ED were an evolutionarily conserved phenomenon, then it should be inducible in blastocysts of normally non-diapausing mammals, such as domestic species. To prove this hypothesis, we examined whether blastocysts from domestic sheep (Ovis aries) could enter into diapause following their transfer into mouse uteri in which diapause conditions were induced. Sheep blastocysts entered into diapause, as demonstrated by growth arrest, viability maintenance and their ED-specific pattern of gene expression. Seven days after transfer, diapausing ovine blastocysts were able to resume growth in vitro and, after transfer to surrogate ewe recipients, to develop into normal lambs. The finding that non-diapausing ovine embryos can enter into diapause implies that this phenomenon is phylogenetically conserved and not secondarily acquired by embryos of diapausing species. Our study questions the current model of independent evolution of ED in different mammalian orders

    Prediction of HIV-1 virus-host protein interactions using virus and host sequence motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Host protein-protein interaction networks are altered by invading virus proteins, which create new interactions, and modify or destroy others. The resulting network topology favors excessive amounts of virus production in a stressed host cell network. Short linear peptide motifs common to both virus and host provide the basis for host network modification.</p> <p>Methods</p> <p>We focused our host-pathogen study on the binding and competing interactions of HIV-1 and human proteins. We showed that peptide motifs conserved across 70% of HIV-1 subtype B and C samples occurred in similar positions on HIV-1 proteins, and we documented protein domains that interact with these conserved motifs. We predicted which human proteins may be targeted by HIV-1 by taking pairs of human proteins that may interact via a motif conserved in HIV-1 and the corresponding interacting protein domain.</p> <p>Results</p> <p>Our predictions were enriched with host proteins known to interact with HIV-1 proteins ENV, NEF, and TAT (p-value < 4.26E-21). Cellular pathways statistically enriched for our predictions include the T cell receptor signaling, natural killer cell mediated cytotoxicity, cell cycle, and apoptosis pathways. Gene Ontology molecular function level 5 categories enriched with both predicted and confirmed HIV-1 targeted proteins included categories associated with phosphorylation events and adenyl ribonucleotide binding.</p> <p>Conclusion</p> <p>A list of host proteins highly enriched with those targeted by HIV-1 proteins can be obtained by searching for host protein motifs along virus protein sequences. The resulting set of host proteins predicted to be targeted by virus proteins will become more accurate with better annotations of motifs and domains. Nevertheless, our study validates the role of linear binding motifs shared by virus and host proteins as an important part of the crosstalk between virus and host.</p

    A Flow Cytometry-Based FRET Assay to Identify and Analyse Protein-Protein Interactions in Living Cells

    Get PDF
    Försters resonance energy transfer (FRET) microscopy is widely used for the analysis of protein interactions in intact cells. However, FRET microscopy is technically challenging and does not allow assessing interactions in large cell numbers. To overcome these limitations we developed a flow cytometry-based FRET assay and analysed interactions of human and simian immunodeficiency virus (HIV and SIV) Nef and Vpu proteins with cellular factors, as well as HIV Rev multimer-formation.Amongst others, we characterize the interaction of Vpu with CD317 (also termed Bst-2 or tetherin), a host restriction factor that inhibits HIV release from infected cells and demonstrate that the direct binding of both is mediated by the Vpu membrane-spanning region. Furthermore, we adapted our assay to allow the identification of novel protein interaction partners in a high-throughput format.The presented combination of FRET and FACS offers the precious possibility to discover and define protein interactions in living cells and is expected to contribute to the identification of novel therapeutic targets for treatment of human diseases

    Host sequence motifs shared by HIV predict response to antiretroviral therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV viral genome mutates at a high rate and poses a significant long term health risk even in the presence of combination antiretroviral therapy. Current methods for predicting a patient's response to therapy rely on site-directed mutagenesis experiments and <it>in vitro </it>resistance assays. In this bioinformatics study we treat response to antiretroviral therapy as a two-body problem: response to therapy is considered to be a function of both the host and pathogen proteomes. We set out to identify potential responders based on the presence or absence of host protein and DNA motifs on the HIV proteome.</p> <p>Results</p> <p>An alignment of thousands of HIV-1 sequences attested to extensive variation in nucleotide sequence but also showed conservation of eukaryotic short linear motifs on the protein coding regions. The reduction in viral load of patients in the Stanford HIV Drug Resistance Database exhibited a bimodal distribution after 24 weeks of antiretroviral therapy, with 2,000 copies/ml cutoff. Similarly, patients allocated into responder/non-responder categories based on consistent viral load reduction during a 24 week period showed clear separation. In both cases of phenotype identification, a set of features composed of short linear motifs in the reverse transcriptase region of HIV sequence accurately predicted a patient's response to therapy. Motifs that overlap resistance sites were highly predictive of responder identification in single drug regimens but these features lost importance in defining responders in multi-drug therapies.</p> <p>Conclusion</p> <p>HIV sequence mutates in a way that preferentially preserves peptide sequence motifs that are also found in the human proteome. The presence and absence of such motifs at specific regions of the HIV sequence is highly predictive of response to therapy. Some of these predictive motifs overlap with known HIV-1 resistance sites. These motifs are well established in bioinformatics databases and hence do not require identification via <it>in vitro </it>mutation experiments.</p

    Comparative maturation of cynomolgus monkey oocytes in vivo and in vitro

    Get PDF
    BACKGROUND: In vitro maturation (IVM) of oocytes followed by fertilization in vitro (IVF) and embryo transfer offers an alternative to conventional IVF treatment that minimises drug administration and avoids ovarian hyperstimulation. However, the technique is less efficient than maturation in vivo. In the present study, a non-human primate model was used to address the hypothesis that the number of oocytes is increased and their nuclear and cytoplasmic maturity after IVM are improved when maturation is initiated in vivo by priming with hCG. METHODS: Young, adult cynomolgus monkeys were given recombinant human (rh) gonadotropins to stimulate the development of multiple follicles, and oocytes were aspirated 0, 12, 24, or 36 h after injection of an ovulatory dose of rhCG. The nuclear status of oocytes was determined at the time of recovery and after culture for a total elapsed time of 40–44 hours after hCG. RESULTS: Priming with hCG significantly increased the number of oocytes harvested, especially after delaying aspiration for 24 h or longer. Nuclear maturation after the full period in culture was also enhanced by priming: 71.5, 83.6, and 94.6% of oocytes collected at 0, 12, and 24 h hCG had progressed to MII by the end of the culture period, compared to 87.8% of oocytes that were retrieved at 36 h. A large proportion of oocytes reaching the MII stage had either or both abnormal spindles (>40%) and misaligned chromosomes (>60%), judging by immunofluorescence microscopy, but these abnormalities were independent of culture time. The mitochondria were evenly distributed throughout the cytoplasm at all stages of maturation. Importantly, there was no microscopic evidence that the duration of culture had any injurious effects on the cells. CONCLUSION: In conclusion, the evidence supports this non-human primate as a model for human IVM and the practice of priming with hCG to promote developmental potential

    Essential Role of Cyclophilin A for Hepatitis C Virus Replication and Virus Production and Possible Link to Polyprotein Cleavage Kinetics

    Get PDF
    Viruses are obligate intracellular parasites and therefore their replication completely depends on host cell factors. In case of the hepatitis C virus (HCV), a positive-strand RNA virus that in the majority of infections establishes persistence, cyclophilins are considered to play an important role in RNA replication. Subsequent to the observation that cyclosporines, known to sequester cyclophilins by direct binding, profoundly block HCV replication in cultured human hepatoma cells, conflicting results were obtained as to the particular cyclophilin (Cyp) required for viral RNA replication and the underlying possible mode of action. By using a set of cell lines with stable knock-down of CypA or CypB, we demonstrate in the present work that replication of subgenomic HCV replicons of different genotypes is reduced by CypA depletion up to 1,000-fold whereas knock-down of CypB had no effect. Inhibition of replication was rescued by over-expression of wild type CypA, but not by a mutant lacking isomerase activity. Replication of JFH1-derived full length genomes was even more sensitive to CypA depletion as compared to subgenomic replicons and virus production was completely blocked. These results argue that CypA may target an additional viral factor outside of the minimal replicase contributing to RNA amplification and assembly, presumably nonstructural protein 2. By selecting for resistance against the cyclosporine analogue DEBIO-025 that targets CypA in a dose-dependent manner, we identified two mutations (V2440A and V2440L) close to the cleavage site between nonstructural protein 5A and the RNA-dependent RNA polymerase in nonstructural protein 5B that slow down cleavage kinetics at this site and reduce CypA dependence of viral replication. Further amino acid substitutions at the same cleavage site accelerating processing increase CypA dependence. Our results thus identify an unexpected correlation between HCV polyprotein processing and CypA dependence of HCV replication

    Identifying potential survival strategies of HIV-1 through virus-host protein interaction networks

    Get PDF
    Background: The National Institute of Allergy and Infectious Diseases has launched the HIV-1 Human Protein Interaction Database in an effort to catalogue all published interactions between HIV-1 and human proteins. In order to systematically investigate these interactions functionally and dynamically, we have constructed an HIV-1 human protein interaction network. This network was analyzed for important proteins and processes that are specific for the HIV life-cycle. In order to expose viral strategies, network motif analysis was carried out showing reoccurring patterns in virus-host dynamics.Results: Our analyses show that human proteins interacting with HIV form a densely connected and central sub-network within the total human protein interaction network. The evaluation of this sub-network for connectivity and centrality resulted in a set of proteins essential for the HIV life-cycle. Remarkably, we were able to associate proteins involved in RNA polymerase II transcription with hubs and proteasome formation with bottlenecks. Inferred network motifs show significant over-representation of positive and negative feedback patterns between virus and host. Strikingly, such patterns have never been reported in combined virus-host systems.Conclusions: HIV infection results in a reprioritization of cellular processes reflected by an increase in the relative importance of transcriptional machinery and proteasome formation. We conclude that during the evolution of HIV, some patterns of interaction have been selected for resulting in a system where virus proteins preferably interact with central human proteins for direct control and with proteasomal proteins for indirect control over the cellular processes. Finally, the patterns described by network motifs illustrate how virus and host interact with one another
    corecore