49 research outputs found

    TAP38 - a key player in LHCII dephosphorylation

    Get PDF

    Antimicrobial solid media for screening non‐sterile Arabidopsis thaliana seeds

    Get PDF
    Stable genetic transformation of plants is a low-efficiency process, and identification of positive transformants usually relies on screening for expression of a co-transformed marker gene. Often this involves germinating seeds on solid media containing a selection reagent. Germination on solid media requires surface sterilization of seeds and careful aseptic technique to prevent microbial contamination, but surface sterilization techniques are time consuming and can cause seed mortality if not performed carefully. We developed an antimicrobial cocktail that can be added to solid media to inhibit bacterial and fungal growth without impairing germination, allowing us to bypass the surface sterilization step. Adding a combination of terbinafine (1 ÎŒM) and timentin (200 mg l−1) to Murashige and Skoog agar delayed the onset of observable microbial growth and did not affect germination of non-sterile seeds from 10 different wild-type and mutant Arabidopsis thaliana accessions. We named this antimicrobial solid medium “MSTT agar”. Seedlings sown in non-sterile conditions could be maintained on MSTT agar for up to a week without observable contamination. This medium was compatible with rapid screening methods for hygromycin B, phosphinothricin (BASTA) and nourseothricin resistance genes, meaning that positive transformants can be identified from non-sterile seeds in as little as 4 days after stratification, and transferred to soil before the onset of visible microbial contamination. By using MSTT agar we were able to select genetic transformants on solid media without seed surface sterilization, eliminating a tedious and time-consuming step.</p

    The major thylakoid protein kinases STN7 and STN8 revisited: effects of altered STN8 levels and regulatory specificities of the STN kinases

    Get PDF
    Thylakoid phosphorylation is predominantly mediated by the protein kinases STN7 and STN8. While STN7 primarily catalyzes LHCII phosphorylation, which enables LHCII to migrate from photosystem (PS) II to PSI, STN8 mainly phosphorylates PSII core proteins. The reversible phosphorylation of PSII core proteins is thought to regulate the PSII repair cycle and PSII supercomplex stability, and play a role in modulating the folding of thylakoid membranes. Earlier studies clearly demonstrated a considerable substrate overlap between the two STN kinases, raising the possibility of a balanced interdependence between them at either the protein or activity level. Here, we show that such an interdependence of the STN kinases on protein level does not seem to exist as neither knock-out nor overexpression of STN7 or STN8 affects accumulation of the other. STN7 and STN8 are both shown to be integral thylakoid proteins that form part of molecular supercomplexes, but exhibit different spatial distributions and are subject to different modes of regulation. Evidence is presented for the existence of a second redox-sensitive motif in STN7, which seems to be targeted by thioredoxin f. Effects of altered STN8 levels on PSII core phosphorylation, supercomplex formation, photosynthetic performance and thylakoid ultrastructure were analyzed in Arabidopsis thaliana using STN8-overexpressing plants (oeSTN8). In general, oeSTN8 plants were less sensitive to intense light and exhibited changes in thylakoid ultrastructure, with grana stacks containing more layers and reduced amounts of PSII supercomplexes. Hence, we conclude that STN8 acts in an amount-dependent manner similar to what was shown for STN7 in previous studies. However, the modes of regulation of the STN kinases appear to differ significantly

    INTEGRATED MID-INFRARED, FAR INFRARED AND TERAHERTZ OPTICAL HALL EFFECT (OHE) INSTRUMENT, AND METHOD OF USE

    Get PDF
    System Stage, and Optical Hall Effect (OHE) system method for evaluating such as free charge carrier effective mass, concentration, mobility and free charge carrier type in a (51) Int. Ci. sample utilizing a permanent magnet at room temperature

    Chloroplast Proteins without Cleavable Transit Peptides

    Get PDF
    Most chloroplast proteins (cp proteins) are nucleus-encoded, synthesized on cytosolic ribosomes as precursor proteins containing a presequence (cTP), and post-translationally imported via the Tic/Toc complex into the organelle, where the cTP is removed. Only a few unambiguous instances of cp proteins that do not require cTPs (non-canonical cp proteins) have been reported so far. However, the survey of data from large-scale proteomic studies presented here suggests that the fraction of such proteins in the total cp proteome might be as large as approximately 30%. To explore this discrepancy, we chose a representative set of 28 putative non-canonical cp proteins, and used in vitro import and Red Fluorescent Protein (RFP)-fusion assays to determine their sub-cellular destinations. Four proteins, including embryo defective 1211, glycolate oxidase 2, protein disulfide isomerase-like protein (PDII), and a putative glutathione S-transferase, could be unambiguously assigned to the chloroplast. Several others ('potential cp proteins') were found to be imported into chloroplasts in vitro, but failed to localize to the organelle when RFP was fused to their C-terminal ends. Extrapolations suggest that the fraction of cp proteins that enter the inner compartments of the organelle, although they lack a cTP, might be as large as 11.4% of the total cp proteome. Our data also support the idea that cytosolic proteins that associate with the cp outer membrane might account for false positive cp proteins obtained in earlier studies

    The relationship between perceived social support and depressive symptoms in informal caregivers of community-dwelling older persons in Chile

    Get PDF
    AIM: Depression among caregivers of older persons is a serious concern, but it is often overlooked and neglected in developing countries. The aim of this study was to examine the relationship between perceived social support and depression in informal caregivers of community-dwelling older persons in Chile. Methods: We analyzed cross-sectional secondary data on 377 dyads of community-dwelling older persons and their informal caregivers from a nationwide survey in Chile. The Duke-UNC Functional Social Support Questionnaire (FSSQ) was used to measure caregivers’ perceived social support, and the Center for Epidemiologic Studies Depression Scale assessed their depression. Results: In this study, 76.9% of the caregivers perceived a high level of social support, and 46.9% were assessed as having depression. Based on multivariable analysis, factors that decrease the likelihood of being depressed are a high level of social support (odds ratio (OR) = 0.311, 95% confidence interval (CI): 0.167–0.579) and having taken holidays in the past 12 months (OR = 0.513, 95%CI: 0.270–0.975). Factors that increase the likelihood of being depressed are being a female caregiver (OR = 2.296, 95%CI: 1.119–4.707), being uninsured (OR = 4.321, 95%CI: 1.750–10.672), being the partner or spouse of the care recipient (OR = 3.832, 95%CI: 1.546–9.493), and the number of hours of care (OR = 1.053, 95%CI: 1.021–1.085). Conclusion: Higher levels of perceived social support and holidays were associated with lower levels of depression. However, being female, being the care recipient's partner or spouse, being uninsured, and having long care periods had detrimental effects. Interventions to preserve and enhance perceived social support could help improve depressive symptoms in informal caregivers. Additionally, support should be available to caregivers who are women, uninsured, and the care recipient's partner or spouse, as well as those who provide care for long hours, to ensure they have respite from their caregiving role

    Exploiting photosynthesis-driven P450 activity to produce indican in tobacco chloroplasts

    Get PDF
    Photosynthetic organelles offer attractive features for engineering small molecule bioproduction by their ability to convert solar energy into chemical energy required for metabolism. The possibility to couple biochemical production directly to photosynthetic assimilation as a source of energy and substrates has intrigued metabolic engineers. Specifically, the chemical diversity found in plants often relies on cytochrome P450-mediated hydroxylations that depend on reductant supply for catalysis and which often lead to metabolic bottlenecks for heterologous production of complex molecules. By directing P450 enzymes to plant chloroplasts one can elegantly deal with such redox prerequisites. In this study, we explore the capacity of the plant photosynthetic machinery to drive P450-dependent formation of the indigo precursor indoxyl-ÎČ-D-glucoside (indican) by targeting an engineered indican biosynthetic pathway to tobacco (Nicotiana benthamiana) chloroplasts. We show that both native and engineered variants belonging to the human CYP2 family are catalytically active in chloroplasts when driven by photosynthetic reducing power and optimize construct designs to improve productivity. However, while increasing supply of tryptophan leads to an increase in indole accumulation, it does not improve indican productivity, suggesting that P450 activity limits overall productivity. Co-expression of different redox partners also does not improve productivity, indicating that supply of reducing power is not a bottleneck. Finally, in vitro kinetic measurements showed that the different redox partners were efficiently reduced by photosystem I but plant ferredoxin provided the highest light-dependent P450 activity. This study demonstrates the inherent ability of photosynthesis to support P450-dependent metabolic pathways. Plants and photosynthetic microbes are therefore uniquely suited for engineering P450-dependent metabolic pathways regardless of enzyme origin. Our findings have implications for metabolic engineering in photosynthetic hosts for production of high-value chemicals or drug metabolites for pharmacological studies

    Prospects to improve the nutritional quality of crops

    Get PDF
    A growing world population as well as the need to enhance sustainability and health create challenges for crop breeding. To address these challenges, not only quantitative but also qualitative improvements are needed, especially regarding the macro- and micronutrient composition and content. In this review, we describe different examples of how the nutritional quality of crops and the bioavailability of individual nutrients can be optimised. We focus on increasing protein content, the use of alternative protein crops and improving protein functionality. Furthermore, approaches to enhance the content of vitamins and minerals as well as healthy specialised metabolites and long-chain polyunsaturated fatty acids are considered. In addition, methods to reduce antinutrients and toxins are presented. These approaches could help to decrease the ‘hidden hunger’ caused by micronutrient deficiencies. Furthermore, a more diverse crop range with improved nutritional profile could help to shift to healthier and more sustainable plant-based diets
    corecore