40,183 research outputs found

    Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres - Part 2: Analysis of composite microstructure and mechanical properties

    Get PDF
    Copyright @ 1997 Chapman and Hall. This article is the author version of the published article which can be accessed at the link below.The microstructure and mechanical properties of polypropylene composites containing flax and wheat straw fibres are discussed. Particular emphasis has been given to determining the nature and consequences of fibre damage induced during melt-processing operations, fibre orientation occurring in mouldings, and possible interfacial adhesion between the matrix and fibres. Compared to unfilled polypropylene, addition of flax and wheat straw caused a significant increase in tensile modulus, particularly, in the case of flax fibres, which also gave higher tensile yield strength and Charpy toughness, despite a lack of interfacial bonding. Tensile strength was increased further through inclusion of 5% by weight of maleic anhydride-modified polypropylene, which was shown to promote adhesion between fibres and matrix.This work was supported by the EPSRC, DTI and Cookson Plantpak Ltd through the LINK Crops for Industrial Use programme

    Assembly of the precursor and processed light-harvesting chlorophyll a/b protein of Lemna into the light-harvesting complex II of barley etiochloroplasts.

    Get PDF
    When the in vitro synthesized precursor of a light-harvesting chlorophyll a/b binding protein (LHCP) from Lemna gibba is imported into barley etiochloroplasts, it is processed to a single form. Both the processed form and the precursor are found in the thylakoid membranes, assembled into the light-harvesting complex of photosystem II. Neither form can be detected in the stromal fraction. The relative amounts of precursor and processed forms observed in the thylakoids are dependent on the developmental stage of the plastids used for uptake. The precursor as well as the processed form can also be detected in thylakoids of greening maize plastids used in similar uptake experiments. This detection of a precursor in the thylakoids, which has not been previously reported, could be a result of using rapidly developing plastids and/or using an heterologous system. Our results demonstrate that the extent of processing of LHCP precursor is not a prerequisite for its inclusion in the complex. They are also consistent with the possibility that the processing step can occur after insertion of the protein into the thylakoid membrane

    Transient electrothermal simulation of power semiconductor devices

    Get PDF
    In this paper, a new thermal model based on the Fourier series solution of heat conduction equation has been introduced in detail. 1-D and 2-D Fourier series thermal models have been programmed in MATLAB/Simulink. Compared with the traditional finite-difference thermal model and equivalent RC thermal network, the new thermal model can provide high simulation speed with high accuracy, which has been proved to be more favorable in dynamic thermal characterization on power semiconductor switches. The complete electrothermal simulation models of insulated gate bipolar transistor (IGBT) and power diodes under inductive load switching condition have been successfully implemented in MATLAB/Simulink. The experimental results on IGBT and power diodes with clamped inductive load switching tests have verified the new electrothermal simulation model. The advantage of Fourier series thermal model over widely used equivalent RC thermal network in dynamic thermal characterization has also been validated by the measured junction temperature

    A Hierarchy of Scheduler Classes for Stochastic Automata

    Get PDF
    Stochastic automata are a formal compositional model for concurrent stochastic timed systems, with general distributions and non-deterministic choices. Measures of interest are defined over schedulers that resolve the nondeterminism. In this paper we investigate the power of various theoretically and practically motivated classes of schedulers, considering the classic complete-information view and a restriction to non-prophetic schedulers. We prove a hierarchy of scheduler classes w.r.t. unbounded probabilistic reachability. We find that, unlike Markovian formalisms, stochastic automata distinguish most classes even in this basic setting. Verification and strategy synthesis methods thus face a tradeoff between powerful and efficient classes. Using lightweight scheduler sampling, we explore this tradeoff and demonstrate the concept of a useful approximative verification technique for stochastic automata

    The effect of indentation force and displacement on visual perception of compliance

    Get PDF
    This paper investigates the effect of maximum indentation force and depth on people's ability to accurately discriminate compliance using indirect visual information only. Participants took part in two psychophysical experiments in which they were asked to choose the 'softest' sample out of a series of presented sample pairs. In the experiments, participants observed a computer-actuated tip indent the sample pairs to one of two conditions; maximum depth (10mm) or maximum force (4N). This indentation process simulates tool operated palpation in laparoscopic surgery. Results were used to plot psychometric functions as a measure of accuracy of compliance discriminability. A comparison indicated that participants performed best in the task where they judged samples being indented to a pre-set maximum force relying solely on visual cues, which demonstrates the effect of visual information on compliance discrimination. Results also show that indentation cues such as force and deformation depth have different effects on our ability to visually discriminate compliance. These findings will inform future work on designing a haptic feedback system capable of augmenting visual and haptic information independently for optimal compliance discrimination performance

    Climate change rapidly warms and acidifies Australian estuaries.

    Full text link
    Climate change is impacting ecosystems worldwide. Estuaries are diverse and important aquatic ecosystems; and yet until now we have lacked information on the response of estuaries to climate change. Here we present data from a twelve-year monitoring program, involving 6200 observations of 166 estuaries along >1100 kilometres of the Australian coastline encompassing all estuary morphologies. Estuary temperatures increased by 2.16 °C on average over 12 years, at a rate of 0.2 °C year-1, with waters acidifying at a rate of 0.09 pH units and freshening at 0.086 PSU year-1. The response of estuaries to climate change is dependent on their morphology. Lagoons and rivers are warming and acidifying at the fastest rate because of shallow average depths and limited oceanic exchange. The changes measured are an order of magnitude faster than predicted by global ocean and atmospheric models, indicating that existing global models may not be useful to predict change in estuaries
    • 

    corecore