312 research outputs found
VLSI implementation of an energy-aware wake-up detector for an acoustic surveillance sensor network
We present a low-power VLSI wake-up detector for a sensor network that uses acoustic signals to localize ground-base vehicles. The detection criterion is the degree of low-frequency periodicity in the acoustic signal, and the periodicity is computed from the "bumpiness" of the autocorrelation of a one-bit version of the signal. We then describe a CMOS ASIC that implements the periodicity estimation algorithm. The ASIC is functional and its core consumes 835 nanowatts. It was integrated into an acoustic enclosure and deployed in field tests with synthesized sounds and ground-based vehicles.Fil: Goldberg, David H.. Johns Hopkins University; Estados UnidosFil: Andreou, Andreas. Johns Hopkins University; Estados UnidosFil: Julian, Pedro Marcelo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad Nacional del Sur. Departamento de IngenierĂa ElĂ©ctrica y de Computadoras; ArgentinaFil: Pouliquen, Philippe O.. Johns Hopkins University; Estados UnidosFil: Riddle, Laurence. Signal Systems Corporation; Estados UnidosFil: Rosasco, Rich. Signal Systems Corporation; Estados Unido
Shear bands in granular flow through a mixing length model
We discuss the advantages and results of using a mixing-length, compressible
model to account for shear banding behaviour in granular flow. We formulate a
general approach based on two function of the solid fraction to be determined.
Studying the vertical chute flow, we show that shear band thickness is always
independent from flowrate in the quasistatic limit, for Coulomb wall boundary
conditions. The effect of bin width is addressed using the functions developed
by Pouliquen and coworkers, predicting a linear dependence of shear band
thickness by channel width, while literature reports contrasting data. We also
discuss the influence of wall roughness on shear bands. Through a Coulomb wall
friction criterion we show that our model correctly predicts the effect of
increasing wall roughness on the thickness of shear bands. Then a simple
mixing-length approach to steady granular flows can be useful and
representative of a number of original features of granular flow.Comment: submitted to EP
Block to granular-like transition in dense bubble flows
We have experimentally investigated 2-dimensional dense bubble flows
underneath inclined planes. Velocity profiles and velocity fluctuations have
been measured. A broad second-order phase transition between two dynamical
regimes is observed as a function of the tilt angle . For low
values, a block motion is observed. For high values, the velocity
profile becomes curved and a shear velocity gradient appears in the flow.Comment: Europhys. Lett. (2003) in pres
Sustainability of the new Argo mission
Report on the progress made on the sustainability of the new Argo missio
The MESANGE model: re-estimation on National Accounts base 2000 / Part 2 Version with chained-linked volumes
Mesange is a medium-size quarterly macro-econometric model of the French economy (about 500 equations, three sectors). The model describes short-term Keynesian dynamics and its long-term equilibrium is driven by supply-side determinants. Its reestimation on data from the national accounts base 2000 with fixed-base volumes is presented in a recent working paper (Klein and Simon, 2010). This first version of the model has been optimized for simulation use. Other applications of the Mesange model (short-term forecasting, analyses of the past) required its adaptation to the published data from the quarterly accounts with chained-linked volumes, as well as the integration of the recent crisis episode. A second version of the Mesange model has, therefore, been developed for this purpose. This version is presented in this working paper. First, the problems raised for macroeconomic modelling by national accounts with chained-linked volumes are explained and the solutions chosen to adapt the model to these new conventions are discussed. The applications of the version of the model with chained-linked volumes are, then, explained and illustrated with examples. Last, the main reestimated equations are detailed. The differences with respect to the version of the model with fixed-base volumes are commented. They stem from estimations based on non-identical data, but also from the different uses made of the two versions of Mesange and the resulting various needs and constraints that have conditioned the methodological choices that have been made. As for the version of the model with chained-linked volumes, priority has been given to the quality of the adjustment to the data rather than to the underlying theoretical framework. Nonetheless, the philosophy and general structure of the two versions of the model remain very much alike.macroeconometric model, estimation, chained-linked volumes, short-term forecasting, contribution analysis
Dynamics and stress in gravity driven granular flow
We study, using simulations, the steady-state flow of dry sand driven by
gravity in two-dimensions. An investigation of the microscopic grain dynamics
reveals that grains remain separated but with a power-law distribution of
distances and times between collisions.
While there are large random grain velocities, many of these fluctuations are
correlated across the system and local rearrangements are very slow. Stresses
in the system are almost entirely transfered by collisions and the structure of
the stress tensor comes almost entirely from a bias in the directions in which
collisions occur.Comment: 4 pages, 3 eps figures, RevTe
Continuous Avalanche Segregation of Granular Mixtures in Thin Rotating Drums
We study segregation of granular mixtures in the continuous avalanche regime
(for frequencies above ~ 1 rpm) in thin rotating drums using a continuum theory
for surface flows of grains. The theory predicts profiles in agreement with
experiments only when we consider a flux dependent velocity of flowing grains.
We find the segregation of species of different size and surface properties,
with the smallest and roughest grains being found preferentially at the center
of the drum. For a wide difference between the species we find a complete
segregation in agreement with experiments. In addition, we predict a transition
to a smooth segregation regime - with an power-law decay of the concentrations
as a function of radial coordinate - as the size ratio between the grains is
decreased towards one.Comment: 4 pages, 4 figures, http://polymer.bu.edu/~hmaks
Thick surface flows of granular materials: The effect of the velocity profile on the avalanche amplitude
A few years ago, Bouchaud al. introduced a phenomenological model to describe
surface flows of granular materials [J. Phys. Fr. I, 4, 1383 (1994)]. According
to this model, one can distinguish between a static phase and a rolling phase
that are able to exchange grains through an erosion/accretion mechanism.
Boutreux et al. [Phys. Rev. E, 58, 4692 (1998)] proposed a modification of the
exchange term in order to describe thicker flows where saturation effects are
present. However, these approaches assumed that the downhill convection
velocity of the grains is constant inside the rolling phase, a hypothesis that
is not verified experimentally. In this article, we therefore modify the above
models by introducing a velocity profile in the flow, and study the physical
consequences of this modification in the simple situation of an avalanche in an
open cell. We present a complete analytical description of the avalanche in the
case of a linear velocity profile, and generalize the results for a power-law
dependency. We show, in particular, that the amplitude of the avalanche is
strongly affected by the velocity profile.Comment: 7 figures, accepted for publication in Phys. Rev.
Scalar conservation laws with nonconstant coefficients with application to particle size segregation in granular flow
Granular materials will segregate by particle size when subjected to shear,
as occurs, for example, in avalanches. The evolution of a bidisperse mixture of
particles can be modeled by a nonlinear first order partial differential
equation, provided the shear (or velocity) is a known function of position.
While avalanche-driven shear is approximately uniform in depth, boundary-driven
shear typically creates a shear band with a nonlinear velocity profile. In this
paper, we measure a velocity profile from experimental data and solve initial
value problems that mimic the segregation observed in the experiment, thereby
verifying the value of the continuum model. To simplify the analysis, we
consider only one-dimensional configurations, in which a layer of small
particles is placed above a layer of large particles within an annular shear
cell and is sheared for arbitrarily long times. We fit the measured velocity
profile to both an exponential function of depth and a piecewise linear
function which separates the shear band from the rest of the material. Each
solution of the initial value problem is non-standard, involving curved
characteristics in the exponential case, and a material interface with a jump
in characteristic speed in the piecewise linear case
Stress Transmission through Three-Dimensional Ordered Granular Arrays
We measure the local contact forces at both the top and bottom boundaries of
three-dimensional face-centered-cubic and hexagonal-close-packed granular
crystals in response to an external force applied to a small area at the top
surface. Depending on the crystal structure, we find markedly different results
which can be understood in terms of force balance considerations in the
specific geometry of the crystal. Small amounts of disorder are found to create
additional structure at both the top and bottom surfaces.Comment: 9 pages including 9 figures (many in color) submitted to PR
- …