7 research outputs found

    A Plasma Membrane Association Module in Yeast Amino Acid Transporters

    Get PDF
    Contains fulltext : 168741.pdf (Publisher’s version ) (Open Access)Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in silico analyses and mutational studies we find that the C-terminal sequences of Gap1, Bap2, Hip1, Tat1, Tat2, Mmp1, Sam3, Agp1, and Gnp1 are about 50 residues long, associate with the PM and have features that discriminate them from the termini of organellar amino acid transporters. We show that this sequence (named PMasseq) contains a amphipathic alpha-helix and the FWC signature, which is palmitoylated by palmitoyl transferase Pfa4. Variations of PMasseq, found in different AAPs, lead to different mobilities and localization patterns, whereas the disruption of the sequence has an adverse effect on cell viability. We propose that PMasseq modulates the function and localization of AAPs along the PM. PMasseq is one of the most complex protein signals for plasma membrane association across species, and can be used as a delivery vehicle for the PM

    Levels of estrogen receptor B splice variant (ERBΔ5) mRNA correlates with progesterone receptor in breast carcinomas

    Get PDF
    It is well known that breast tumors which are estrogen positive ER(+) are more likely to respond to hormone therapy. However, a certain percentage of ER(+)/PR(+) tumors do not respond to this therapy. Identification of the second estrogen receptor, named estrogen receptor beta (ERβ), as well as the existence of numerous isoforms/splice variants of both ERα and ERβ, suggests that a complex regulation of estrogen action exists. In this study, we analyzed the expression ratio of ERβ1 isoform and ERβΔ5 splice variant mRNAs, and its correlation with ER/PR status by quantitative RT-PCR and clinical and histopathological parameters. We found that the relative proportion of ERβΔ5 in the total ERβ1 transcript 'pool' inversely correlates with the PR level (p = -0,359, p< 0,003, Spearman). It may be that the ERβΔ5 variant modulates the ERα activity of downstream targets. In addition, we suggest that the determination of the expression profiles of ERα and ERβ isoforms and splice variants in the defined groups of patients are necessary for elucidating their involvement in endocrine resistance

    EGFR Dynamics Change during Activation in Native Membranes as Revealed by NMR

    Get PDF
    The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase

    EGFR Dynamics Change during Activation in Native Membranes as Revealed by NMR

    Get PDF
    The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase

    Role of Tim50 in the Transfer of Precursor Proteins from the Outer to the Inner Membrane of Mitochondria

    No full text
    Transport of essentially all matrix and a number of inner membrane proteins is governed, entirely or in part, by N-terminal presequences and requires a coordinated action of the translocases of outer and inner mitochondrial membranes (TOM and TIM23 complexes). Here, we have analyzed Tim50, a subunit of the TIM23 complex that is implicated in transfer of precursors from TOM to TIM23. Tim50 is recruited to the TIM23 complex via Tim23 in an interaction that is essentially independent of the rest of the translocase. We find Tim50 in close proximity to the intermembrane space side of the TOM complex where it recognizes both types of TIM23 substrates, those that are to be transported into the matrix and those destined to the inner membrane, suggesting that Tim50 recognizes presequences. This function of Tim50 depends on its association with TIM23. We conclude that the efficient transfer of precursors between TOM and TIM23 complexes requires the concerted action of Tim50 with Tim23
    corecore