73 research outputs found

    Enhancement of photoacoustic detection of inhomogeneities in polymers

    Get PDF
    We report a series of experiments on laser pulsed photoacoustic excitationin turbid polymer samples addressed to evaluate the sound speed in the samples and the presence of inhomogeneities in the bulk. We describe a system which allows the direct measurement of the speed of the detected waves by engraving the surface of the piece under study with a fiduciary pattern of black lines. We also describe how this pattern helps to enhance the sensitivity for the detection of an inhomogeneity in the bulk. These two facts are useful for studies in soft matter systems including, perhaps, biological samples. We have performed an experimental analysis on Grilon(R) samples in different situations and we show the limitations of the method.Comment: 8 pages, 7 figure

    Engineering integrated pure narrow-band photon sources

    Full text link
    Engineering and controlling well defined states of light for quantum information applications is of increasing importance as the complexity of quantum systems grows. For example, in quantum networks high multi-photon interference visibility requires properly devised single mode sources. In this paper we propose a spontaneous parametric down conversion source based on an integrated cavity-waveguide, where single narrow-band, possibly distinct, spectral modes for the idler and the signal fields can be generated. This mode selection takes advantage of the clustering effect, due to the intrinsic dispersion of the nonlinear material. In combination with a CW laser and fast detection, our approach provides a means to engineer a source that can efficiently generate pure photons, without filtering, that is compatible with long distance quantum communication. Furthermore, it is extremely flexible and could easily be adapted to a wide variety of wavelengths and applications.Comment: 13 pages, 7 figure

    Waveguide-based OPO source of entangled photon pairs

    Full text link
    In this paper we present a compact source of narrow-band energy-time entangled photon pairs in the telecom regime based on a Ti-indiffused Periodically Poled Lithium Niobate (PPLN) waveguide resonator, i.e. a waveguide with end-face dielectric multi-layer mirrors. This is a monolithic doubly resonant Optical Parametric Oscillator (OPO) far below threshold, which generates photon pairs by Spontaneous Parametric Down Conversion (SPDC) at around 1560nm with a 117MHz (0.91 pm)- bandwidth. A coherence time of 2.7 ns is estimated by a time correlation measurement and a high quality of the entangled states is confirmed by a Bell-type experiment. Since highly coherent energy-time entangled photon pairs in the telecom regime are suitable for long distance transmission and manipulation, this source is well suited to the requirements of quantum communication.Comment: 13 page

    Current mapping of GaN films by conductive atomic force microscopy

    Get PDF
    Conductive atomic force microscopy has been used to investigate the local conductivity in hydride vapor-phase epitaxy and molecular-beam epitaxyGaN films, focusing on the effect of off-axis facet planes. We investigated two different types of samples, in which the facet planes were either present on the perimeters of as-grown islands, or on the edges of etch pits created by post-growth chemical etching. The results show that crystallographic planes tilted with respect to the c-plane growth direction show a significantly higher conductivity than surrounding areas. The n-type (or p-type) samples required a negative (or positive) sample bias for current conduction, consistent with the formation of a Schottky barrier between the metallized atomic force microscope tip and sample. The time dependence of this enhanced conductivity was different for the two types of samples, possibly indicating different conduction mechanisms

    A versatile source of polarisation entangled photons for quantum network applications

    Get PDF
    We report a versatile and practical approach for generating high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photon at a telecom wavelength associated with an advanced energy-time to polarisation transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulating single photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters.Comment: 5 figure

    Laser-Induced Skyrmion Writing and Erasing in an Ultrafast Cryo-Lorentz Transmission Electron Microscopy

    Get PDF
    We demonstrate that light-induced heat pulses of different duration and energy can write skyrmions in a broad range of temperatures and magnetic field in FeGe. Using a combination of camera-rate and pump-probe cryo-Lorentz Transmission Electron Microscopy, we directly resolve the spatio-temporal evolution of the magnetization ensuing optical excitation. The skyrmion lattice was found to maintain its structural properties during the laser-induced demagnetization, and its recovery to the initial state happened in the sub-{\mu}s to {\mu}s range, depending on the cooling rate of the system

    Polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength

    Get PDF
    We report the realization of a fiber coupled polarization entangled photon-pair source at 1310 nm based on a birefringent titanium in-diffused waveguide integrated on periodically poled lithium niobate. By taking advantage of a dedicated and high-performance setup, we characterized the quantum properties of the pairs by measuring two-photon interference in both Hong-Ou-Mandel and standard Bell inequality configurations. We obtained, for the two sets of measurements, interference net visibilities reaching nearly 100%, which represent important and competitive results compared to similar waveguide-based configurations already reported. These results prove the relevance of our approach as an enabling technology for long-distance quantum communication.Comment: 13 pages, 4 figures, to appear in New Journal of Physic

    Enhancement of photoacoustic detection of inhomogeneities in polymers

    Get PDF
    We report a series of experiments on laser pulsed photoacoustic excitation in turbid polymer samples addressed to evaluate the sound speed in the samples and the presence of inhomogeneities in the bulk. We describe a system which allows the direct measurement of the speed of the detected waves by engraving the surface of the piece under study with a fiduciary pattern of black lines. We also describe how this pattern helps to enhance the sensitivity for the detection of an inhomogeneity in the bulk. These two facts are useful for studies in soft matter systems including, perhaps, biological samples. We have performed an experimental analysis on Grilon®samples in different situations and we show the limitations of the method.Facultad de Ingenierí

    Photophysical Heavy-Atom Effect in Iodinated Metallocorroles: Spin-Orbit Coupling and Density of States

    Get PDF
    This work was supported by COST Actions CM1202 and CM1405 Actions, the Czech Science Foundation (GAČR) grant 17-011375, and the Swiss NSF via the NCCR:MUST, contracts n° 200021_137717 and IZK0Z2_150425
    • …
    corecore