23 research outputs found

    Measuring CO2 and HCO3- permeabilities of isolated chloroplasts using a MIMS-18O approach

    No full text
    To support photosynthetic CO2 fixation by Rubisco, the chloroplast must be fed with inorganic carbon in the form of CO2 or bicarbonate. However, the mechanisms allowing the rapid passage of this gas and this charged molecule through the bounding membranes of the chloroplast envelope are not yet completely elucidated. We describe here a method allowing us to measure the permeability of these two molecules through the chloroplast envelope using a membrane inlet mass spectrometer and 18O-labelled inorganic carbon. We established that the internal stromal carbonic anhydrase activity is not limiting for this technique, and precisely measured the chloroplast surface area and permeability values for CO2 and bicarbonate. This was performed on chloroplasts from several plant species, with values ranging from 2.3 × 10-4 m s-1 to 8 × 10-4 m s-1 permeability for CO2 and 1 × 10-8 m s-1 for bicarbonate. We were able to apply our method to chloroplasts from an Arabidopsis aquaporin mutant, and this showed that CO2 permeability was reduced 50% in the mutant compared with the wild-type reference.This work was supported by the University of Illinois as part of the Bill and Melinda Gates Foundation-funded Realizing Increased Photosynthetic Efficiency (RIPE) consortium, and the Australian Research Council’s Centre of Excellence for Translational Photosynthesis

    Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects

    Get PDF
    Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation.These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks

    Historiografia econômica do dízimo agrário na Ibero-América: os casos do Brasil e Nova Espanha, século XVIII

    Full text link

    Tolleter et al_highly enriched

    No full text
    COPASI file of numerical modelling used for the the generation of time courses for changes in dually labelled CO2 (highly enriched 18O bicarbonate

    Data from: Measuring CO2 and HCO3- permeabilities of isolated chloroplasts using a MIMS-18O approach

    No full text
    To support photosynthetic CO2 fixation by Rubisco, the chloroplast must be fed with inorganic carbon in the form of CO2 or bicarbonate. However, the mechanisms allowing the rapid passage of this gas and this charged molecule through the bounding membranes of the chloroplast envelope are not yet completely elucidated. We describe here a method allowing us to measure the permeability of these two molecules through the chloroplast envelope using a membrane inlet mass spectrometer and 18O-labelled inorganic carbon. We established that the internal stromal carbonic anhydrase activity is not limiting for this technique, and precisely measured the chloroplast surface area and permeability values for CO2 and bicarbonate. This was performed on chloroplasts from several plant species, with values ranging from 2.3 × 10–4 m s–1 to 8 × 10–4 m s–1 permeability for CO2 and 1 × 10–8 m s–1 for bicarbonate. We were able to apply our method to chloroplasts from an Arabidopsis aquaporin mutant, and this showed that CO2 permeability was reduced 50% in the mutant compared with the wild-type reference

    Tolleter et al_lowly enriched

    No full text
    COPASI file of numerical modelling used for the generation of times courses for changes in singly labelled CO2 species (lowly enriched 18O bicarbonate
    corecore