149 research outputs found

    Development of an innovative adenovirus-inspired self-assembling vaccine platform rapidly adaptable to coronaviruses and other emergent viruses

    Get PDF
    The COVID-19 pandemic clearly shows how emergent diseases can cause severe global health and economic problems. We must be prepared to react swiftly against new pathogenic agents and this requires the development of vaccines that are safe, efficient in the long-term and easily adaptable with a short revision time. To this end, the COVID-19 mRNA and adenoviral vector vaccines have been spectacular successes, permitting rapid vaccination across the world in an unprecedented manner. Here we report the design of a new adenovirus-derived vaccine technology based on non-infectious pseudo-viral nanoparticles from the serotype 3 human adenovirus. Each nanoparticle comprises sixty identical proteins that assemble to form a 30 nm diameter spherical particle. A sequence has been engineered into the surface of this protein that enables the display of a covalently-bound target antigens. To demonstrate the efficiency of this approach, we added the SARS-CoV 2 spike protein receptor binding domain (RBD), that interacts with host cell ACE2 receptors, to the surface of the nanoparticles. We first showed that the glycosylated RBD retained its ACE2-binding function when displayed on nanoparticles. We then measured the in vivo humoral response of our vaccine candidate in mice and observed a strong antibody response after the prime injection; further levels were achieved following a second booster injection. In mice preimmunized with underivatized adenoviral nanoparticles, we tested if adenovirus seroprevalence, as frequently observed in humans, was detrimental to the RBD-mediated protection provided by our vaccine candidate. Interestingly, a strong anti-coronaviral response was still observed suggesting that existing circulating anti-adenovirus antibodies are not deleterious to our vaccine platform. We then performed pseudo-CoV 2 neutralization assays and obtained higher ID50 values than observed with COVID-19 convalescent sera, thus showing the high potential efficacy of our vaccine platform. This new vaccine technology is a tool that is easily adaptable to future SARS-CoV 2 variants and, more generally, to future emergent viruses and pathogens

    Profiling Human Antibody Responses by Integrated Single-Cell Analysis

    Get PDF
    Comprehensive characterization of the antigen-specific B cells induced during infections or following vaccination would facilitate the discovery of novel antibodies and inform how interventions shape protective humoral responses. The analysis of human B cells and their antibodies has been performed using flow cytometry to evaluate memory B cells and expanded plasmablasts, while microtechnologies have also provided a useful tool to examine plasmablasts/plasma cells after vaccination. Here we present an integrated analytical platform, using arrays of subnanoliter wells (nanowells), for constructing detailed profiles for human B cells comprising the immunophenotypes of these cells, the distribution of isotypes of the secreted antibodies, the specificity and relative affinity for defined antigens, and for a subset of cells, the genes encoding the heavy and light chains. The approach combines on-chip image cytometry, microengraving, and single-cell RT-PCR. Using clinical samples from HIV-infected subjects, we demonstrate that the method can identify antigen-specific neutralizing antibodies, is compatible with both plasmablasts/plasma cells and activated memory B cells, and is well-suited for characterizing the limited numbers of B cells isolated from tissue biopsies (e.g., colon biopsies). The technology should facilitate detailed analyses of human humoral responses for evaluating vaccines and their ability to raise protective antibody responses across multiple anatomical compartments

    A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition

    Get PDF
    The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10

    Adaptation of HIV-1 Envelope Glycoprotein gp120 to Humoral Immunity over the Course of the Epidemic

    Get PDF
    Since 2009, a large panel of broad and potent monoclonal neutralizing antibodies (MoNAbs) against HIV-1 have been isolated. These MoNAbs can protect from lllV-1 infection and suppress established infection in animal models. Because their efficacy should be evaluated in human clinical trials, it is of importance to define the sensitivity of the most contemporary transmitted variants to these MoNAbs. We, and others previously, reported that HIV-1 has become more resistant to neutralization over the course of the epidemic (Bunnik et al., Nature Med 2010, Bouvin-Pley et al., PloS Pathog 2013). Methods: Here we extended the analyses to the most potent MoNAbs described since then, either more recently isolated or improved by structure-based gene modifications. Results: We fully confirmed the first observations showing an increasing resistance of HIV-1 clade B over time to MoNAbs targeting the major gp l20 epitopes but not to MoNAbs targeting the gp41 MPER. Despite this evolution, some MoNAbs still were able to neutralize efficiently the most recently transmitted HIV-1 variants (2006-2010). The most potent MoNAbs were the bi-specific PG9- and PG16-iMab that alone were able to neutralize an variants at less than 0.4 mg/mL. The sensitivity to iMAb remained similar over time, suggesting that the trend of increasing resistance to PG9-/PG16-iMAb may be attributed only to die antigen binding domain of PG9/PG16. NIH45-46m2 (and -m7), 10-1074 and 10E8 were also highly potent and, if combined, reached the potency of PG9-/PG16-iMAb. We also observed that 3BNC 117 was almost as potent as the modified NIH45-46 antibodies, and that the lama-derived JM4IgG2b was the most potent Ab among those that do not target the major gp 120 neutralizing epitopes. Conclusions: These data clearly suggest a continuous drift of the env gene of HIV-1 elude B over the epidemic, and that not a single epitope is concerned but the entire gp120 as a whole. The consequences of this adaptation on the envelope functionality are being explored

    Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding

    Get PDF
    Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike

    Broadly neutralizing antibody responses in a large longitudinal sub-Saharan HIV primary infection cohort

    Get PDF
    Author Summary Understanding how HIV-1-broadly neutralizing antibodies (bnAbs) develop during natural infection is essential to the design of an efficient HIV vaccine. We studied kinetics and correlates of neutralization breadth in a large sub-Saharan African longitudinal cohort of 439 participants with primary HIV-1 infection. Broadly nAb responses developed in 15% of individuals, on average three years after infection. Broad neutralization was associated with high viral load, low CD4+ T cell counts, virus subtype C infection and HLA*A3(-) genotype. A correlation with high overall plasma IgG levels and anti-Env binding titers was also found. Specificity mapping of the bnAb responses showed that glycan-dependent epitopes, in particular the N332 region, were most commonly targeted, in contrast to other bnAb epitopes, suggesting that the HIV Env N332-glycan epitope region may be a favorable target for vaccine design

    Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1)-specific monoclonal antibodies with extraordinary potency and breadth have recently been described. In humanized mice, combinations of monoclonal antibodies have been shown to suppress viraemia, but the therapeutic potential of these monoclonal antibodies has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific monoclonal antibodies, as well as the single glycan-dependent monoclonal antibody PGT121, resulted in a rapid and precipitous decline of plasma viraemia to undetectable levels in rhesus monkeys chronically infected with the pathogenic simian–human immunodeficiency virus SHIV-SF162P3. A single monoclonal antibody infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa and lymph nodes without the development of viral resistance. Moreover, after monoclonal antibody administration, host Gag-specific T-lymphocyte responses showed improved functionality. Virus rebounded in most animals after a median of 56 days when serum monoclonal antibody titres had declined to undetectable levels, although, notably, a subset of animals maintained long-term virological control in the absence of further monoclonal antibody infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of monoclonal antibody therapy for HIV-1 in humans.National Institutes of Health (U.S.) (AI055332)National Institutes of Health (U.S.) (AI060354)National Institutes of Health (U.S.) (AI078526)National Institutes of Health (U.S.) (AI084794)National Institutes of Health (U.S.) (AI095985)National Institutes of Health (U.S.) (AI096040)National Institutes of Health (U.S.) (AI100148)National Institutes of Health (U.S.) (AI10063)Bill & Melinda Gates Foundation (OPP1033091)Bill & Melinda Gates Foundation (OPP1033115)Bill & Melinda Gates Foundation (OPP1040741)Bill & Melinda Gates Foundation (OPP1040753)Ragon Institute of MGH, MIT, and HarvardStavros S. Niarchos FoundationHoward Hughes Medical Institute (Investigator

    Broadly Neutralizing Human Anti-HIV Antibody 2G12 Is Effective in Protection against Mucosal SHIV Challenge Even at Low Serum Neutralizing Titers

    Get PDF
    Developing an immunogen that elicits broadly neutralizing antibodies (bNAbs) is an elusive but important goal of HIV vaccine research, especially after the recent failure of the leading T cell based HIV vaccine in human efficacy trials. Even if such an immunogen can be developed, most animal model studies indicate that high serum neutralizing concentrations of bNAbs are required to provide significant benefit in typical protection experiments. One possible exception is provided by the anti-glycan bNAb 2G12, which has been reported to protect macaques against CXCR4-using SHIV challenge at relatively low serum neutralizing titers. Here, we investigated the ability of 2G12 administered intravenously (i.v.) to protect against vaginal challenge of rhesus macaques with the CCR5-using SHIVSF162P3. The results show that, at 2G12 serum neutralizing titers of the order of 1∶1 (IC90), 3/5 antibody-treated animals were protected with sterilizing immunity, i.e. no detectable virus replication following challenge; one animal showed a delayed and lowered primary viremia and the other animal showed a course of infection similar to 4 control animals. This result contrasts strongly with the typically high titers observed for protection by other neutralizing antibodies, including the bNAb b12. We compared b12 and 2G12 for characteristics that might explain the differences in protective ability relative to neutralizing activity. We found no evidence to suggest that 2G12 transudation to the vaginal surface was significantly superior to b12. We also observed that the ability of 2G12 to inhibit virus replication in target cells through antibody-mediated effector cell activity in vitro was equivalent or inferior to b12. The results raise the possibility that some epitopes on HIV may be better vaccine targets than others and support targeting the glycan shield of the envelope

    An MPER antibody neutralizes HIV-1 using germline features shared among donors.

    Get PDF
    The membrane-proximal external region (MPER) of HIV-1 envelope glycoprotein (Env) can be targeted by neutralizing antibodies of exceptional breadth. MPER antibodies usually have long, hydrophobic CDRH3s, lack activity as inferred germline precursors, are often from the minor IgG3 subclass, and some are polyreactive, such as 4E10. Here we describe an MPER broadly neutralizing antibody from the major IgG1 subclass, PGZL1, which shares germline V/D-region genes with 4E10, has a shorter CDRH3, and is less polyreactive. A recombinant sublineage variant pan-neutralizes a 130-isolate panel at 1.4 μg/ml (IC50). Notably, a germline revertant with mature CDR3s neutralizes 12% of viruses and still binds MPER after DJ reversion. Crystal structures of lipid-bound PGZL1 variants and cryo-EM reconstruction of an Env-PGZL1 complex reveal how these antibodies recognize MPER and viral membrane. Discovery of common genetic and structural elements among MPER antibodies from different patients suggests that such antibodies could be elicited using carefully designed immunogens
    • …
    corecore