8 research outputs found

    Protein network for genomic maintenance in the hyperthermophilic archaeon Pyrococcus abyssi

    No full text
    Les organismes vivants doivent reproduire et transmettre ne variatur l’information contenue dans les chromosomes. Ainsi, la conservation de l’intégrité du génome est un processus biologique fondamental. La maintenance génomique constitue l’ensemble des processus biologiques impliqués dans la conservation, la duplication et la transmission de l’information génétique contenue dans les chromosomes. La machinerie réplicative des Archaea est décrite comme une version simplifiés de celle connue chez les Eucaryotes faisant des Archaea un excellent modèle d’étude de la réplication. Contrairement à la réplication, les processus Archaea de réparation de l’ADN sont encore mystérieux. En effet, plusieurs protéines essentielles de la réparation semblent absentes des génomes Archaea et ce même chez les espèces Hyperthermophiles (HA). Avec une température optimale de croissance proche de 100°C, ces Archaea doivent posséder des capacités considérables de réparation des dommages de l’ADN, catalysés à haute température. Ainsi les Archaea hyperthermophiles sont probablement dotées d’un système de réparation alternatif extrêmement efficace. Ce système et sa coordination avec la réplication sont inconnus. Un protocole de purification d’affinité couplée à la spectrométrie de masse des protéines a permis d’identifier les complexes protéiques impliqués dans la maintenance génomique de l’Archaea hyperthermophile P. abyssi. Les complexes identifiés sont compilées dans un réseau d’interaction. Soumis à une étude topologique le réseau révèle notamment de nouvelles interactions entre des protéines essentielles de la maintenance génomique, conservées avec les Eucaryotes. Plusieurs interactions sont vérifiées indépendamment où caractérisées fonctionnellement in vitro ou in vivo. Ces travaux mettent en lumière l’étroite collaboration entre la réplication et la recombinaison de l’ADN et révèlent de nouveaux aspects de la machinerie de transcription.DNA replication, recombination and repair are central and essential mechanisms in all cells. Highly efficienthigh-fidelity chromosome replication is vital for maintaining the integrity of the genetic information and for theavoidance of genetic disease. Archaeal replisome is described as simplified version of the eukaryotic system.However, DNA repair is still enigmatic, as many essential repair proteins have not been identified in Archaealgenomes. The question of DNA repair is even more puzzling while many Archaea lives under extremetemperature that promotes DNA instability and catalyses nucleobase damages. Thus, HyperthermophilicArchaea (HA) must have solved a molecular problem (spontaneous loss of native DNA structure) at amagnitude that mesophilic organisms do not face. A highly adapted DNA maintenance system must operate inorder to maintain DNA integrity. Those mechanisms and their possible coordination with DNA replication arestill unknown. Here, I report the first protein-protein interaction network of genomic maintenance in HA. Using AP-MSapproach we identified new protein complexes potentially implicated in DNA replication, recombination andrepair of HA P. abyssi. Topological analysis of the network highlighted both known and unknown partners ofessential and conserved protein of genomic maintenance. From the network emerges multifunctional clustersintegrating both replication and recombination proteins and revealing new aspects of the transcriptionmachinery. I also provide experimental confirmation of some of the interactions we detected.I propose that the interactions we observe reflects the interplay between recombination and replicationmachineries that likely interfaces with regulatory elements involved in the control of the DNA damageresponse, as shown by the identification of a new factors, presumably involved in the coupling of DNArecombination and DNA synthesis at the replication fork

    Exploration du réseau d’interactions impliqué dans la maintenance génomique de l'Archaea hyperthermophile Pyrococcus abyssi

    No full text
    DNA replication, recombination and repair are central and essential mechanisms in all cells. Highly efficienthigh-fidelity chromosome replication is vital for maintaining the integrity of the genetic information and for theavoidance of genetic disease. Archaeal replisome is described as simplified version of the eukaryotic system.However, DNA repair is still enigmatic, as many essential repair proteins have not been identified in Archaealgenomes. The question of DNA repair is even more puzzling while many Archaea lives under extremetemperature that promotes DNA instability and catalyses nucleobase damages. Thus, HyperthermophilicArchaea (HA) must have solved a molecular problem (spontaneous loss of native DNA structure) at amagnitude that mesophilic organisms do not face. A highly adapted DNA maintenance system must operate inorder to maintain DNA integrity. Those mechanisms and their possible coordination with DNA replication arestill unknown. Here, I report the first protein-protein interaction network of genomic maintenance in HA. Using AP-MSapproach we identified new protein complexes potentially implicated in DNA replication, recombination andrepair of HA P. abyssi. Topological analysis of the network highlighted both known and unknown partners ofessential and conserved protein of genomic maintenance. From the network emerges multifunctional clustersintegrating both replication and recombination proteins and revealing new aspects of the transcriptionmachinery. I also provide experimental confirmation of some of the interactions we detected.I propose that the interactions we observe reflects the interplay between recombination and replicationmachineries that likely interfaces with regulatory elements involved in the control of the DNA damageresponse, as shown by the identification of a new factors, presumably involved in the coupling of DNArecombination and DNA synthesis at the replication fork.Les organismes vivants doivent reproduire et transmettre ne variatur l’information contenue dans les chromosomes. Ainsi, la conservation de l’intégrité du génome est un processus biologique fondamental. La maintenance génomique constitue l’ensemble des processus biologiques impliqués dans la conservation, la duplication et la transmission de l’information génétique contenue dans les chromosomes. La machinerie réplicative des Archaea est décrite comme une version simplifiés de celle connue chez les Eucaryotes faisant des Archaea un excellent modèle d’étude de la réplication. Contrairement à la réplication, les processus Archaea de réparation de l’ADN sont encore mystérieux. En effet, plusieurs protéines essentielles de la réparation semblent absentes des génomes Archaea et ce même chez les espèces Hyperthermophiles (HA). Avec une température optimale de croissance proche de 100°C, ces Archaea doivent posséder des capacités considérables de réparation des dommages de l’ADN, catalysés à haute température. Ainsi les Archaea hyperthermophiles sont probablement dotées d’un système de réparation alternatif extrêmement efficace. Ce système et sa coordination avec la réplication sont inconnus. Un protocole de purification d’affinité couplée à la spectrométrie de masse des protéines a permis d’identifier les complexes protéiques impliqués dans la maintenance génomique de l’Archaea hyperthermophile P. abyssi. Les complexes identifiés sont compilées dans un réseau d’interaction. Soumis à une étude topologique le réseau révèle notamment de nouvelles interactions entre des protéines essentielles de la maintenance génomique, conservées avec les Eucaryotes. Plusieurs interactions sont vérifiées indépendamment où caractérisées fonctionnellement in vitro ou in vivo. Ces travaux mettent en lumière l’étroite collaboration entre la réplication et la recombinaison de l’ADN et révèlent de nouveaux aspects de la machinerie de transcription

    Physical and functional interplay between PCNA DNA clamp and Mre11–Rad50 complex from the archaeon Pyrococcus furiosus

    No full text
    International audienceSeveral archaeal species prevalent in extreme environments are particularly exposed to factors likely to cause DNA damages. These include hyperthermophilic archaea (HA), living at temperatures >70 • C, which arguably have efficient strategies and robust genome guardians to repair DNA damage threatening their genome integrity. In contrast to Eukarya and other archaea, homologous recombination appears to be a vital pathway in HA, and the Mre11-Rad50 complex exerts a broad influence on the initiation of this DNA damage response process. In a previous study, we identified a physical association between the Proliferating Cell Nuclear Antigen (PCNA) and the Mre11-Rad50 (MR) complex. Here, by performing co-immunoprecipitation and SPR analyses, we identified a short motif in the C-terminal portion of Pyrococcus furiosus Mre11 involved in the interaction with PCNA. Through this work, we revealed a PCNA-interaction motif corresponding to a variation on the PIP motif theme which is conserved among Mre11 sequences of Thermococcale species. Additionally, we demonstrated functional interplay in vitro between P. furiosus PCNA and MR enzymatic functions in the DNA end resection process. At physiological ionic strength, PCNA stimulates MR nuclease activities for DNA end resection and promotes an endonucleolytic incision proximal to the 5 strand of double strand DNA break

    RPA, bound to <i>ss</i>DNA, interacts with DNA polymerase D and DNA primase.

    No full text
    <p>The catalytic subunit of the DNA primase (<b>A</b>), PolD (<b>B</b>) and PolB (<b>C</b>) were injected at different concentrations (16.67 nM, 50 nM, 150 nM and 450 nM) on a chip coated with the assembly of a 32mer <i>ss</i>DNA bound by RPA. Signals reported (black curves) are already subtracted from a RPA dissociation curve and data were fitted using a 1:1 binding reaction model (red curves). </p

    PCNA interacts with Mre11/Rad50 complex.

    No full text
    <p>10 µg of HIS fusion Mre11/Rad50 immobilized on Co2+ magnetic beads were incubated with 0.5 µg of PCNA in absence or presence of DNase I (Pulldown Nuc- or Pulldown Nuc+). Control lanes consisted in the Co2+ beads only (1) or incubated with either the complex Mre11/Rad50 (2) or the PCNA (3). Bait and prey proteins were analysed by Western blot, and probed with PCNA or HIS antibodies. </p

    RPA stimulates transcription <i>in</i><i>vitro</i>.

    No full text
    <p>The effect of RPA on transcription was analysed by <i>in </i><i>vitro</i> transcription experiments either in the absence or in the presence of increasing amounts of RPA (10 nM, lane 2; 20 nM, lane 3; 30 nM, lane 4; 50 nM, lane 5). The presence or absence of TBP or TFB is indicated on top of the lanes. The effect of RPA on transcription activity from three replicates was quantified by phosphorimaging (Fujifilm FLA-5000) and indicated as activation fold, with standard deviation, at the bottom of each lane. </p

    Zamore “the African” and the Haunting of France's Collective Consciousness

    No full text
    corecore