11 research outputs found

    Improved hybrid model for obstacle detection and avoidance in robot operating system framework (rapidly exploring random tree and dynamic windows approach)

    Get PDF
    The integration of machine learning and robotics brings promising potential to tackle the application challenges of mobile robot navigation in industries. The real-world environment is highly dynamic and unpredictable, with increasing necessities for efficiency and safety. This demands a multi-faceted approach that combines advanced sensing, robust obstacle detection, and avoidance mechanisms for an effective robot navigation experience. While hybrid methods with default robot operating system (ROS) navigation stack have demonstrated significant results, their performance in real time and highly dynamic environments remains a challenge. These environments are characterized by continuously changing conditions, which can impact the precision of obstacle detection systems and efficient avoidance control decision-making processes. In response to these challenges, this paper presents a novel solution that combines a rapidly exploring random tree (RRT)-integrated ROS navigation stack and a pre-trained YOLOv7 object detection model to enhance the capability of the developed work on the NAV-YOLO system. The proposed approach leveraged the high accuracy of YOLOv7 obstacle detection and the efficient path-planning capabilities of RRT and dynamic windows approach (DWA) to improve the navigation performance of mobile robots in real-world complex and dynamically changing settings. Extensive simulation and real-world robot platform experiments were conducted to evaluate the efficiency of the proposed solution. The result demonstrated a high-level obstacle avoidance capability, ensuring the safety and efficiency of mobile robot navigation operations in aviation environments

    Fusion and comparison of prognostic models for remaining useful life of aircraft systems

    Get PDF
    Changes in the performance of an aircraft system will straightforwardly affect the safe operation of the aircraft, and the technical requirements of Prognostics and Health Management (PHM) are highly relevant. Remaining Useful Life (RUL) prediction, part of the core technologies of PHM, is a cutting-edge innovation being worked on lately and an effective means to advance the change of upkeep support mode and work on the framework's security, unwavering quality, and economic reasonableness. This paper summarizes a detailed preliminary literature review and comparison of different prognostic approaches and the forecasting methods' taxonomy, the methodology's details, and provides its application to aircraft systems. It also provides a brief introduction to the predictive maintenance concept and condition-based maintenance (CBM). This article uses several predictive models to predict RUL and classifies conventional regression algorithms according to the similarity in function and form of the algorithms. More classical algorithms in each category are selected to compare the prediction results, and finally, the combined effects of the RUL prediction are obtained by weighted fusion, accuracy, and compatibility. The performance of the proposed models is assessed based on evaluations of RUL acquired from the hybrid and individual predictive models. This correlation depends on the most current prognostic metrics. The outcomes show that the proposed strategy develops precision, robustness, and adaptability. Hence, the work in this paper shall enrich the advancement of predictive maintenance and modern innovation of prognostic development

    Advancements in learning-based navigation systems for robotic applications in MRO hangar: review

    Get PDF
    The field of learning-based navigation for mobile robots is experiencing a surge of interest from research and industry sectors. The application of this technology for visual aircraft inspection tasks within a maintenance, repair, and overhaul (MRO) hangar necessitates efficient perception and obstacle avoidance capabilities to ensure a reliable navigation experience. The present reliance on manual labour, static processes, and outdated technologies limits operation efficiency in the inherently dynamic and increasingly complex nature of the real-world hangar environment. The challenging environment limits the practical application of conventional methods and real-time adaptability to changes. In response to these challenges, recent years research efforts have witnessed advancement with machine learning integration aimed at enhancing navigational capability in both static and dynamic scenarios. However, most of these studies have not been specific to the MRO hangar environment, but related challenges have been addressed, and applicable solutions have been developed. This paper provides a comprehensive review of learning-based strategies with an emphasis on advancements in deep learning, object detection, and the integration of multiple approaches to create hybrid systems. The review delineates the application of learning-based methodologies to real-time navigational tasks, encompassing environment perception, obstacle detection, avoidance, and path planning through the use of vision-based sensors. The concluding section addresses the prevailing challenges and prospective development directions in this domain

    CNN-fusion architecture with visual and thermographic images for object detection

    Get PDF
    Mobile robots performing aircraft visual inspection play a vital role in the future automated aircraft maintenance, repair and overhaul (MRO) operations. Autonomous navigation requires understanding the surroundings to automate and enhance the visual inspection process. The current state of neural network (NN) based obstacle detection and collision avoidance techniques are suitable for well-structured objects. However, their ability to distinguish between solid obstacles and low-density moving objects is limited, and their performance degrades in low-light scenarios. Thermal images can be used to complement the low-light visual image limitations in many applications, including inspections. This work proposes a Convolutional Neural Network (CNN) fusion architecture that enables the adaptive fusion of visual and thermographic images. The aim is to enhance autonomous robotic systems’ perception and collision avoidance in dynamic environments. The model has been tested with RGB and thermographic images acquired in Cranfield’s University hangar, which hosts a Boeing 737-400 and TUI hangar. The experimental results prove that the fusion-based CNN framework increases object detection accuracy compared to conventional models

    Mobile robot obstacle detection and avoidance with NAV-YOLO

    Get PDF
    Intelligent robotics is gaining significance in Maintenance, Repair, and Overhaul (MRO) hangar operations, where mobile robots navigate complex and dynamic environments for Aircraft visual inspection. Aircraft hangars are usually busy and changing, with objects of varying shapes and sizes presenting harsh obstacles and conditions that can lead to potential collisions and safety hazards. This makes Obstacle detection and avoidance critical for safe and efficient robot navigation tasks. Conventional methods have been applied with computational issues, while learning-based approaches are limited in detection accuracy. This paper proposes a vision-based navigation model that integrates a pre-trained Yolov5 object detection model into a Robot Operating System (ROS) navigation stack to optimise obstacle detection and avoidance in a complex environment. The experiment is validated and evaluated in ROS-Gazebo simulation and turtlebot3 waffle-pi robot platform. The results showed that the robot can increasingly detect and avoid obstacles without colliding while navigating through different checkpoints to the target location

    Mooring Chain Climbing Robot For Ndt Inspection Applications

    Get PDF
    Inspection of mooring chains is a dangerous and costly procedure covering inspection above and below the waterline. The paper presents initial results from the RIMCAW project which was aimed at designing and building an inspection robot able to climb mooring chains and deploy NDT technologies for scanning individual links thereby to detecting critical defects. The paper focuses on the design and realisation of the inch worm type novel crawler developed and tested in the TWI Middlesbrough water tank

    Advancements in Learning-Based Navigation Systems for Robotic Applications in MRO Hangar: Review

    No full text
    The field of learning-based navigation for mobile robots is experiencing a surge of interest from research and industry sectors. The application of this technology for visual aircraft inspection tasks within a maintenance, repair, and overhaul (MRO) hangar necessitates efficient perception and obstacle avoidance capabilities to ensure a reliable navigation experience. The present reliance on manual labour, static processes, and outdated technologies limits operation efficiency in the inherently dynamic and increasingly complex nature of the real-world hangar environment. The challenging environment limits the practical application of conventional methods and real-time adaptability to changes. In response to these challenges, recent years research efforts have witnessed advancement with machine learning integration aimed at enhancing navigational capability in both static and dynamic scenarios. However, most of these studies have not been specific to the MRO hangar environment, but related challenges have been addressed, and applicable solutions have been developed. This paper provides a comprehensive review of learning-based strategies with an emphasis on advancements in deep learning, object detection, and the integration of multiple approaches to create hybrid systems. The review delineates the application of learning-based methodologies to real-time navigational tasks, encompassing environment perception, obstacle detection, avoidance, and path planning through the use of vision-based sensors. The concluding section addresses the prevailing challenges and prospective development directions in this domain

    IoT Based Smart Wheelchair for Elderly Healthcare Monitoring

    No full text

    An autonomous wheelchair with health monitoring system based on Internet of Thing

    No full text
    Abstract Assistive powered wheelchairs will bring patients and elderly the ability of remain mobile without the direct intervention from caregivers. Vital signs from users can be collected and analyzed remotely to allow better disease prevention and proactive management of health and chronic conditions. This research proposes an autonomous wheelchair prototype system integrated with biophysical sensors based on Internet of Thing (IoT). A powered wheelchair system was developed with three biophysical sensors to collect, transmit and analysis users’ four vital signs to provide real-time feedback to users and clinicians. A user interface software embedded with the cloud artificial intelligence (AI) algorithms was developed for the data visualization and analysis. An improved data compression algorithm Minimalist, Adaptive and Streaming R-bit (O-MAS-R) was proposed to achieve a higher compression ratio with minimum 7.1%, maximum 45.25% compared with MAS algorithm during the data transmission. At the same time, the prototype wheelchair, accompanied with a smart-chair app, assimilates data from the onboard sensors and characteristics features within the surroundings in real-time to achieve the functions including obstruct laser scanning, autonomous localization, and point-to-point route planning and moving within a predefined area. In conclusion, the wheelchair prototype uses AI algorithms and navigation technology to help patients and elderly maintain their independent mobility and monitor their healthcare information in real-time
    corecore