14 research outputs found
Bayesian model selection for GRB 211211A through multiwavelength analyses
Although GRB 211211A is one of the closest gamma-ray bursts (GRBs), its classification is challenging because of its partially inconclusive electromagnetic signatures. In this paper, we investigate four astrophysical scenarios as possible progenitors for GRB 211211A: a binary neutron star merger, a black hole-neutron star merger, a core-collapse supernova, and an r-process enriched core collapse of a rapidly rotating massive star (a collapsar). We perform a large set of Bayesian multiwavelength analyses based on different models describing these scenarios and priors to investigate which astrophysical scenarios and processes might be related to GRB 211211A. Our analysis supports previous studies in which the presence of an additional component, likely related to r-process nucleosynthesis, is required to explain the observed light curves of GRB 211211A, as it cannot be explained solely as a GRB afterglow. Fixing the distance to about, namely the distance of the possible host galaxy SDSS J140910.47+275320.8, we find a statistical preference for a binary neutron star merger scenario
Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022
We present a campaign designed to train the GRANDMA network and its
infrastructure to follow up on transient alerts and detect their early
afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they
are expected to be an electromagnetic counterpart of gravitational-wave events.
Our goal was to improve our response to the alerts and start prompt
observations as soon as possible to better prepare the GRANDMA network for the
fourth observational run of LIGO-Virgo-Kagra (which started at the end of May
2023), and future missions such as SM. To receive, manage and send out
observational plans to our partner telescopes we set up dedicated
infrastructure and a rota of follow-up adcates were organized to guarantee
round-the-clock assistance to our telescope teams. To ensure a great number of
observations, we focused on Swift GRBs whose localization errors were generally
smaller than the GRANDMA telescopes' field of view. This allowed us to bypass
the transient identification process and focus on the reaction time and
efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB
triggers were selected, nine fields had been observed, and three afterglows
were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA
telescopes and 17 amateur astronomers from the citizen science project
Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our
long-term follow-up of the host galaxy allowed us to obtain a photometric
redshift of , its lightcurve elution, fit the decay slope of the
afterglows, and study the properties of the host galaxy
The GRANDMA network in preparation for the fourth gravitational-wave observing run
GRANDMA is a world-wide collaboration with the primary scientific goal ofstudying gravitational-wave sources, discovering their electromagneticcounterparts and characterizing their emission. GRANDMA involves astronomers,astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now atruly global network of telescopes, with (so far) 30 telescopes in bothhemispheres. It incorporates a citizen science programme (Kilonova-Catcher)which constitutes an opportunity to spread the interest in time-domainastronomy. The telescope network is an heterogeneous set of already-existingobserving facilities that operate coordinated as a single observatory. Withinthe network there are wide-field imagers that can observe large areas of thesky to search for optical counterparts, narrow-field instruments that dotargeted searches within a predefined list of host-galaxy candidates, andlarger telescopes that are devoted to characterization and follow-up of theidentified counterparts. Here we present an overview of GRANDMA after the thirdobserving run of the LIGO/VIRGO gravitational-wave observatories in and its ongoing preparation for the forthcoming fourth observational campaign(O4). Additionally, we review the potential of GRANDMA for the discovery andfollow-up of other types of astronomical transients.<br
Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022
International audienceWe present a campaign designed to train the GRANDMA network and its infrastructure to follow up on transient alerts and detect their early afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they are expected to be an electromagnetic counterpart of gravitational-wave events. Our goal was to improve our response to the alerts and start prompt observations as soon as possible to better prepare the GRANDMA network for the fourth observational run of LIGO-Virgo-Kagra (which started at the end of May 2023), and future missions such as SM. To receive, manage and send out observational plans to our partner telescopes we set up dedicated infrastructure and a rota of follow-up adcates were organized to guarantee round-the-clock assistance to our telescope teams. To ensure a great number of observations, we focused on Swift GRBs whose localization errors were generally smaller than the GRANDMA telescopes' field of view. This allowed us to bypass the transient identification process and focus on the reaction time and efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB triggers were selected, nine fields had been observed, and three afterglows were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA telescopes and 17 amateur astronomers from the citizen science project Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our long-term follow-up of the host galaxy allowed us to obtain a photometric redshift of , its lightcurve elution, fit the decay slope of the afterglows, and study the properties of the host galaxy
Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022
International audienceWe present a campaign designed to train the GRANDMA network and its infrastructure to follow up on transient alerts and detect their early afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they are expected to be an electromagnetic counterpart of gravitational-wave events. Our goal was to improve our response to the alerts and start prompt observations as soon as possible to better prepare the GRANDMA network for the fourth observational run of LIGO-Virgo-Kagra (which started at the end of May 2023), and future missions such as SM. To receive, manage and send out observational plans to our partner telescopes we set up dedicated infrastructure and a rota of follow-up adcates were organized to guarantee round-the-clock assistance to our telescope teams. To ensure a great number of observations, we focused on Swift GRBs whose localization errors were generally smaller than the GRANDMA telescopes' field of view. This allowed us to bypass the transient identification process and focus on the reaction time and efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB triggers were selected, nine fields had been observed, and three afterglows were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA telescopes and 17 amateur astronomers from the citizen science project Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our long-term follow-up of the host galaxy allowed us to obtain a photometric redshift of , its lightcurve elution, fit the decay slope of the afterglows, and study the properties of the host galaxy
Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022
International audienceWe present a campaign designed to train the GRANDMA network and its infrastructure to follow up on transient alerts and detect their early afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they are expected to be an electromagnetic counterpart of gravitational-wave events. Our goal was to improve our response to the alerts and start prompt observations as soon as possible to better prepare the GRANDMA network for the fourth observational run of LIGO-Virgo-Kagra (which started at the end of May 2023), and future missions such as SM. To receive, manage and send out observational plans to our partner telescopes we set up dedicated infrastructure and a rota of follow-up adcates were organized to guarantee round-the-clock assistance to our telescope teams. To ensure a great number of observations, we focused on Swift GRBs whose localization errors were generally smaller than the GRANDMA telescopes' field of view. This allowed us to bypass the transient identification process and focus on the reaction time and efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB triggers were selected, nine fields had been observed, and three afterglows were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA telescopes and 17 amateur astronomers from the citizen science project Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our long-term follow-up of the host galaxy allowed us to obtain a photometric redshift of , its lightcurve elution, fit the decay slope of the afterglows, and study the properties of the host galaxy
The GRANDMA network in preparation for the fourth gravitational-wave observing run
GRANDMA is a world-wide collaboration with the primary scientific goal of studying gravitational-wave sources, discovering their electromagnetic counterparts and characterizing their emission. GRANDMA involves astronomers, astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now a truly global network of telescopes, with (so far) 30 telescopes in both hemispheres. It incorporates a citizen science programme (Kilonova-Catcher) which constitutes an opportunity to spread the interest in time-domain astronomy. The telescope network is an heterogeneous set of already-existing observing facilities that operate coordinated as a single observatory. Within the network there are wide-field imagers that can observe large areas of the sky to search for optical counterparts, narrow-field instruments that do targeted searches within a predefined list of host-galaxy candidates, and larger telescopes that are devoted to characterization and follow-up of the identified counterparts. Here we present an overview of GRANDMA after the third observing run of the LIGO/VIRGO gravitational-wave observatories in 2019 - 2020 and its ongoing preparation for the forthcoming fourth observational campaign (O4). Additionally, we review the potential of GRANDMA for the discovery and follow-up of other types of astronomical transients.LASTR
The GRANDMA network in preparation for the fourth gravitational-wave observing run
International audienceGRANDMA is a world-wide collaboration with the primary scientific goal of studying gravitational-wave sources, discovering their electromagnetic counterparts and characterizing their emission. GRANDMA involves astronomers, astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now a truly global network of telescopes, with (so far) 30 telescopes in both hemispheres. It incorporates a citizen science programme (Kilonova-Catcher) which constitutes an opportunity to spread the interest in time-domain astronomy. The telescope network is an heterogeneous set of already-existing observing facilities that operate coordinated as a single observatory. Within the network there are wide-field imagers that can observe large areas of the sky to search for optical counterparts, narrow-field instruments that do targeted searches within a predefined list of host-galaxy candidates, and larger telescopes that are devoted to characterization and follow-up of the identified counterparts. Here we present an overview of GRANDMA after the third observing run of the LIGO/VIRGO gravitational-wave observatories in and its ongoing preparation for the forthcoming fourth observational campaign (O4). Additionally, we review the potential of GRANDMA for the discovery and follow-up of other types of astronomical transients
The GRANDMA network in preparation for the fourth gravitational-wave observing run
International audienceGRANDMA is a world-wide collaboration with the primary scientific goal of studying gravitational-wave sources, discovering their electromagnetic counterparts and characterizing their emission. GRANDMA involves astronomers, astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now a truly global network of telescopes, with (so far) 30 telescopes in both hemispheres. It incorporates a citizen science programme (Kilonova-Catcher) which constitutes an opportunity to spread the interest in time-domain astronomy. The telescope network is an heterogeneous set of already-existing observing facilities that operate coordinated as a single observatory. Within the network there are wide-field imagers that can observe large areas of the sky to search for optical counterparts, narrow-field instruments that do targeted searches within a predefined list of host-galaxy candidates, and larger telescopes that are devoted to characterization and follow-up of the identified counterparts. Here we present an overview of GRANDMA after the third observing run of the LIGO/VIRGO gravitational-wave observatories in and its ongoing preparation for the forthcoming fourth observational campaign (O4). Additionally, we review the potential of GRANDMA for the discovery and follow-up of other types of astronomical transients
Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022
International audienceWe present a campaign designed to train the GRANDMA network and its infrastructure to follow up on transient alerts and detect their early afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they are expected to be an electromagnetic counterpart of gravitational-wave events. Our goal was to improve our response to the alerts and start prompt observations as soon as possible to better prepare the GRANDMA network for the fourth observational run of LIGO-Virgo-Kagra (which started at the end of May 2023), and future missions such as SM. To receive, manage and send out observational plans to our partner telescopes we set up dedicated infrastructure and a rota of follow-up adcates were organized to guarantee round-the-clock assistance to our telescope teams. To ensure a great number of observations, we focused on Swift GRBs whose localization errors were generally smaller than the GRANDMA telescopes' field of view. This allowed us to bypass the transient identification process and focus on the reaction time and efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB triggers were selected, nine fields had been observed, and three afterglows were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA telescopes and 17 amateur astronomers from the citizen science project Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our long-term follow-up of the host galaxy allowed us to obtain a photometric redshift of , its lightcurve elution, fit the decay slope of the afterglows, and study the properties of the host galaxy