77 research outputs found

    Neutrophil apoptosis: a marker of disease severity in sepsis and sepsis-induced acute respiratory distress syndrome

    Get PDF
    INTRODUCTION: Apoptosis of neutrophils (polymorphonuclear neutrophils [PMNs]) may limit inflammatory injury in sepsis and acute respiratory distress syndrome (ARDS), but the relationship between the severity of sepsis and extent of PMN apoptosis and the effect of superimposed ARDS is unknown. The objective of this study was to correlate neutrophil apoptosis with the severity of sepsis and sepsis-induced ARDS. METHODS: A prospective cohort study was conducted in intensive care units of three tertiary hospitals in Porto Alegre, southern Brazil. Fifty-seven patients with sepsis (uncomplicated sepsis, septic shock, and sepsis-induced ARDS) and 64 controls were enrolled. Venous peripheral blood was collected from patients with sepsis within 24 hours of diagnosis. All surgical groups, including controls, had their blood drawn 24 hours after surgery. Control patients on mechanical ventilation had blood collected within 24 hours of initiation of mechanical ventilation. Healthy controls were blood donors. Neutrophils were isolated, and incubated ex vivo, and apoptosis was determined by light microscopy on cytospun preparations. The differences among groups were assessed by analysis of variance with Tukeys. RESULTS: In medical patients, the mean percentage of neutrophil apoptosis (± standard error of the mean [SEM]) was lower in sepsis-induced ARDS (28% ± 3.3%; n = 9) when compared with uncomplicated sepsis (57% ± 3.2%; n = 8; p < 0.001), mechanical ventilation without infection, sepsis, or ARDS (53% ± 3.0%; n = 11; p < 0.001) and healthy controls (69% ± 1.1%; n = 33; p < 0.001) but did not differ from septic shock (38% ± 3.7%; n = 12; p = 0.13). In surgical patients with sepsis, the percentage of neutrophil apoptosis was lower for all groups when compared with surgical controls (52% ± 3.6%; n = 11; p < 0.001). CONCLUSION: In medical patients with sepsis, neutrophil apoptosis is inversely proportional to the severity of sepsis and thus may be a marker of the severity of sepsis in this population

    Yield and nutrition of greenhouse-grown strawberries (Fragaria × ananassa (Duchesne ex Weston) Duchesne ex Rozier. cv. Camarosa) as affected by potassium fertilization

    Get PDF
    In strawberry, potassium fertilization has been little studied, which difficult management strategies for an increasing yield and understanding the use of this nutrient in strawberry crop. The aim of this study was to evaluate the influence of sources and rates of potassium (K) fertilizers on yield, K level and agronomic traits of strawberry cv. Camarosa fruit, carried out under greenhouse conditions. A randomized in a completely block design with four replicates in a factorial arranged 6x3 (six rates of potassium x three sources of potassium fertilizers), was performed. Fertilizers sources used were as follows: potassium sulphate, potassium nitrate and potassium chloride in 0, 60, 120, 180, 240 and 300 kg ha-1 K2O doses. An increasing potassium rates have allowed a higher potassium content in leaves and fruits. A higher potassium content in leaves was obtained by KNO3 (11.70 g kg-1). Yield, fruit number per plant and potassium extraction per plant, increased linearly with the evaluated doses and fruit average weight at a dose of 183 kg ha-1. There was no significant difference among potassium content in leaves. Strawberry production is maximized through potassium fertilization, independent of the source origin.En fresa, se ha estudiado poco la fertilización potásica, lo que complica las estrategias de manejo para aumentar la productividad, y para la comprensión de la utilización de este nutriente en el cultivo de la fresa. El objetivo de este estudio fue evaluar la influencia de las fuentes y dosis de fertilizantes de potasio (K) en el rendimiento, la concentración de K, y las características agronómicas de la fruta de fresa cv. Camarosa, cultivada en condiciones de invernadero. El diseño experimental fue completamente al azar, con cuatro repeticiones, en un 6x3 factorial (seis tasas de K x tres fuentes de fertilizantes potásicos). Las fuentes utilizadas fueron sulfato de potasio, nitrato de potasio y cloruro de potasio aplicado en las siguientes tasas: 0, 60, 120, 180, 240 y 300 kg ha-1 de K2O. Las tasas crecientes de potasio permitieron un mayor contenido de potasio en hojas y frutos. El contenido de potasio más alto a nivel foliar más alto fue obtenido a través de KNO3 (11,70 g kg-1). El rendimiento, número de frutos por planta y la extracción de potasio por planta, aumentó linealmente con las dosis evaluadas y el peso medio del fruto a una dosis de 183 kg. ha-1. No hubo diferencia significativa entre las fuentes de potasio para el contenido foliar de potasio. La producción de fresa se maximiza mediante la fertilización potásica, independientemente del origen de la fuente

    Efeito do ácido quinolínico sobre a homeostase do citoesqueleto de cérebro de ratos jovens : ênfase nas vias de sinalização, aspectos neuroquímicos, histológicos e morfológicos do dano celular

    No full text
    O ácido quinolínico (QUIN) é um metabólito implicado na patologia de diversas doenças neurodegenerativas, sendo que a injeção intraestriatal com QUIN é um modelo bastante utilizado para o estudo da doença de Huntington (DH). A DH envolve manifestações cognitivas, motoras e neuropsiquiátricas, sendo que a forma juvenil da doença (DHJ) tem uma progressão dos sintomas muito mais rápida e é bem menos estudada que a forma adulta. No presente trabalho desenvolvemos um modelo animal da DHJ, além de utilizarmos abordagens ex vivo e estudos in vitro com o objetivo de avaliar os efeitos do QUIN sobre a homeostase do citoesqueleto, as vias de sinalização direcionadas ao equilíbrio de fosforilação/desfosforilação dos filamentos intermediários (FI) de astrócitos e neurônios e a participação do citoesqueleto das células neurais sobre o dano celular no estriado, cortex cerebral e hipocampo de ratos jovens. Também foram avaliados parâmetros comportamentais no estudo in vivo. Para o estudo in vivo, os ratos foram submetidos a uma injeção intraestriatal de QUIN (150 nmol) ou solução salina (controles) e os parâmetros bioquímicos e comportamentais foram avaliados 1, 7, 14 e 21 dias após a injeção. Para o estudo ex vivo, foram utilizadas fatias de estriado tratadas com QUIN (100 μM) ou tampão fisiológico (controles) durante 50 min e ferramentas farmacológicas foram utilizadas para estudar as vias de sinalização envolvidas nos efeitos causados pela neurotoxina no citoesqueleto. Os estudos in vitro foram desenvolvidos utilizando astrócitos e neurônios estriatais em cultura primária, onde as células foram tratadas com QUIN (10-500 μM) ou apenas com veículo (controles) por 24 h. Os resultados mostraram que os ratos injetados com QUIN apresentaram uma diminuição da captação de glutamato e um aumento na captação de Ca2+ logo após a infusão. Estes efeitos causaram alteração na fosforilação dos FI, propagaram-se do estriado para o córtex cerebral e hipocampo e foram acompanhados de gliose reativa e neurodegeneração no estriado e córtex, mas não no hipocampo. Além disso, os animais apresentaram déficit cognitivo que precedeu as alterações motoras, o que é uma característica da DHJ. O estudo ex vivo mostrou que o QUIN causou hiperfosforilação das subunidades dos neurofilamentos (NF) e da proteína glial fibrilar ácida (GFAP), FI de neurônios e astrócitos, respectivamente. Esses efeitos foram dependentes da ativação de receptores glutamatérgicos ionotrópicos e metabotrópicos, do influxo de Ca2+ através de canais de Ca2+ dependentes de voltagem (VDCC) e da ativação de cinases dependentes e independentes de segundos mensageiros. Além disso, o estudo in vitro mostrou que a alteração da fosforilação dos FI neurais é acompanhada de reorganização do citoesqueleto neuronal e astroglial por mecanismos envolvendo Ca2+. Os efeitos sobre o citoesqueleto neuronal foram totalmente revertidos pelo meio condicionado de astrócitos tratados com QUIN. Ainda, o estudo em co-cultura astrócito/neurônio mostrou que há uma proteção recíproca contra os efeitos do QUIN. O conjunto dos nossos dados evidencia que o dano excitotóxico causado pelo QUIN, através do aumento do influxo de Ca2+ para o citoplasma, pode ser um dos principais responsáveis pela desregulação das cascatas de sinalização intracelulares direcionadas para o citoesqueleto, sendo então o citoesqueleto neural um importante alvo para as ações do QUIN no cérebro de ratos jovens. A formação de um quadro de excitotoxicidade, o rompimento da homeostase do citoesqueleto e a alteração tecidual e celular parecem ser etapas iniciais no dano causado pelo QUIN e podem estar relacionados com os déficits comportamentais observados nos animais. Acreditamos que esses resultados são relevantes para a compreensão dos mecanismos moleculares envolvidos na neurotoxicidade causada pelo QUIN em animais jovens e esperamos que a continuidade desse estudo possa contribuir ainda mais para o estudo das bases moleculares da DHJ.Quinolinic acid (QUIN) is a neuroactive metabolite considered to be involved in neurodegenerative disorders, and the intrastriatal injection of QUIN is a commonly used model for the study of HD. The disease involves cognitive, motor and neuropsychiatric manifestations, and the juvenile form of the disease (JHD) has a more rapid progression of symptoms and is much less studied. In the present work we developed an animal model of JHD and ex vivo and in vitro approaches to evaluate the effects of QUIN on the homeostasis of the cytoskeleton, signaling pathways targeting the phosphorylation/dephosphorylation equilibrium of astrocyte and neuron intermediate filaments (IF) and the involvement of the cytoskeleton of neural cells on cell damage in the striatum, cerebral cortex and hippocampus of young rats. Behavioral parameters were also evaluated on in vivo study. For the in vivo study, rats were subjected to an instrastriatal injection of QUIN (150 nmol) or saline (controls) and the biochemical and behavioral parameters were evaluated 1, 7, 14 and 21 days after injection. For ex vivo study, striatal slices treated with QUIN (100 μM) or buffer (control) for 50 min and pharmacological approaches were used to study the signaling pathways involved in the effects caused by the neurotoxin on cytoskeleton. In vitro studies were developed using striatal neurons and astrocytes in primary culture, where cells were treated with QUIN (10-500 mM) or vehicle only (controls) for 24 h. The results showed that rats injected with QUIN showed a decrease in uptake of glutamate and increased uptake of Ca2 + after infusion. These effects caused alterations in the phosphorylation of IFs that propagated from striatum to cerebral cortex and hippocampus and were accompanied by reactive gliosis and neurodegeneration in cortex and striatum but not in hippocampus. Furthermore, the animals showed cognitive deficits that preceded motor changes, which is a characteristic of JHD. Ex vivo studies showed that QUIN caused hyperphosphorylation of neurofilament subunits (NF) and glial fibrillary acidic protein (GFAP), IF of neurons and astrocytes, respectively. These effects were dependent on the activation of ionotropic and metabotropic glutamate receptors, Ca2 + influx through voltage-dependent Ca2 + (VDCC) and the kinase-dependent and independent of activation of second messengers. Moreover, in vitro studies showed that the change in phosphorylation of neural IFs is accompanied by reorganization of the neuronal and astroglial cytoskeleton by mechanisms involving Ca2 +. The effects on the neuronal cytoskeleton were completely reversed by the conditioned medium of astrocytes treated with QUIN. Also, the study with co-cultured astrocyte-neuron showed that there is a mutual protection against the effects of QUIN. The set of our data shows that the excitotoxic damage caused by QUIN by increasing the influx of Ca2 + into the cytoplasm can be a major contributor to the misregulation of cascades of intracellular signaling directed to the cytoskeleton, making the cytoskeleton an important target for the actions of QUIN in brain of young rats. The formation of excitotoxicity, the disruption of cytoskeletal homeostasis and changes in cell tissue appear to be steps in the initial damage caused by QUIN and may be associated with behavioral deficits observed in the animals. We believe that these findings have contributed to a better understanding of the molecular mechanisms involved in the neurotoxicity caused by QUIN in young rats and we expect that the continuation of this study can contribute to the better understanding of the molecular basis of JHD

    Efeito do ácido quinolínico sobre a homeostase do citoesqueleto de cérebro de ratos jovens : ênfase nas vias de sinalização, aspectos neuroquímicos, histológicos e morfológicos do dano celular

    No full text
    O ácido quinolínico (QUIN) é um metabólito implicado na patologia de diversas doenças neurodegenerativas, sendo que a injeção intraestriatal com QUIN é um modelo bastante utilizado para o estudo da doença de Huntington (DH). A DH envolve manifestações cognitivas, motoras e neuropsiquiátricas, sendo que a forma juvenil da doença (DHJ) tem uma progressão dos sintomas muito mais rápida e é bem menos estudada que a forma adulta. No presente trabalho desenvolvemos um modelo animal da DHJ, além de utilizarmos abordagens ex vivo e estudos in vitro com o objetivo de avaliar os efeitos do QUIN sobre a homeostase do citoesqueleto, as vias de sinalização direcionadas ao equilíbrio de fosforilação/desfosforilação dos filamentos intermediários (FI) de astrócitos e neurônios e a participação do citoesqueleto das células neurais sobre o dano celular no estriado, cortex cerebral e hipocampo de ratos jovens. Também foram avaliados parâmetros comportamentais no estudo in vivo. Para o estudo in vivo, os ratos foram submetidos a uma injeção intraestriatal de QUIN (150 nmol) ou solução salina (controles) e os parâmetros bioquímicos e comportamentais foram avaliados 1, 7, 14 e 21 dias após a injeção. Para o estudo ex vivo, foram utilizadas fatias de estriado tratadas com QUIN (100 μM) ou tampão fisiológico (controles) durante 50 min e ferramentas farmacológicas foram utilizadas para estudar as vias de sinalização envolvidas nos efeitos causados pela neurotoxina no citoesqueleto. Os estudos in vitro foram desenvolvidos utilizando astrócitos e neurônios estriatais em cultura primária, onde as células foram tratadas com QUIN (10-500 μM) ou apenas com veículo (controles) por 24 h. Os resultados mostraram que os ratos injetados com QUIN apresentaram uma diminuição da captação de glutamato e um aumento na captação de Ca2+ logo após a infusão. Estes efeitos causaram alteração na fosforilação dos FI, propagaram-se do estriado para o córtex cerebral e hipocampo e foram acompanhados de gliose reativa e neurodegeneração no estriado e córtex, mas não no hipocampo. Além disso, os animais apresentaram déficit cognitivo que precedeu as alterações motoras, o que é uma característica da DHJ. O estudo ex vivo mostrou que o QUIN causou hiperfosforilação das subunidades dos neurofilamentos (NF) e da proteína glial fibrilar ácida (GFAP), FI de neurônios e astrócitos, respectivamente. Esses efeitos foram dependentes da ativação de receptores glutamatérgicos ionotrópicos e metabotrópicos, do influxo de Ca2+ através de canais de Ca2+ dependentes de voltagem (VDCC) e da ativação de cinases dependentes e independentes de segundos mensageiros. Além disso, o estudo in vitro mostrou que a alteração da fosforilação dos FI neurais é acompanhada de reorganização do citoesqueleto neuronal e astroglial por mecanismos envolvendo Ca2+. Os efeitos sobre o citoesqueleto neuronal foram totalmente revertidos pelo meio condicionado de astrócitos tratados com QUIN. Ainda, o estudo em co-cultura astrócito/neurônio mostrou que há uma proteção recíproca contra os efeitos do QUIN. O conjunto dos nossos dados evidencia que o dano excitotóxico causado pelo QUIN, através do aumento do influxo de Ca2+ para o citoplasma, pode ser um dos principais responsáveis pela desregulação das cascatas de sinalização intracelulares direcionadas para o citoesqueleto, sendo então o citoesqueleto neural um importante alvo para as ações do QUIN no cérebro de ratos jovens. A formação de um quadro de excitotoxicidade, o rompimento da homeostase do citoesqueleto e a alteração tecidual e celular parecem ser etapas iniciais no dano causado pelo QUIN e podem estar relacionados com os déficits comportamentais observados nos animais. Acreditamos que esses resultados são relevantes para a compreensão dos mecanismos moleculares envolvidos na neurotoxicidade causada pelo QUIN em animais jovens e esperamos que a continuidade desse estudo possa contribuir ainda mais para o estudo das bases moleculares da DHJ.Quinolinic acid (QUIN) is a neuroactive metabolite considered to be involved in neurodegenerative disorders, and the intrastriatal injection of QUIN is a commonly used model for the study of HD. The disease involves cognitive, motor and neuropsychiatric manifestations, and the juvenile form of the disease (JHD) has a more rapid progression of symptoms and is much less studied. In the present work we developed an animal model of JHD and ex vivo and in vitro approaches to evaluate the effects of QUIN on the homeostasis of the cytoskeleton, signaling pathways targeting the phosphorylation/dephosphorylation equilibrium of astrocyte and neuron intermediate filaments (IF) and the involvement of the cytoskeleton of neural cells on cell damage in the striatum, cerebral cortex and hippocampus of young rats. Behavioral parameters were also evaluated on in vivo study. For the in vivo study, rats were subjected to an instrastriatal injection of QUIN (150 nmol) or saline (controls) and the biochemical and behavioral parameters were evaluated 1, 7, 14 and 21 days after injection. For ex vivo study, striatal slices treated with QUIN (100 μM) or buffer (control) for 50 min and pharmacological approaches were used to study the signaling pathways involved in the effects caused by the neurotoxin on cytoskeleton. In vitro studies were developed using striatal neurons and astrocytes in primary culture, where cells were treated with QUIN (10-500 mM) or vehicle only (controls) for 24 h. The results showed that rats injected with QUIN showed a decrease in uptake of glutamate and increased uptake of Ca2 + after infusion. These effects caused alterations in the phosphorylation of IFs that propagated from striatum to cerebral cortex and hippocampus and were accompanied by reactive gliosis and neurodegeneration in cortex and striatum but not in hippocampus. Furthermore, the animals showed cognitive deficits that preceded motor changes, which is a characteristic of JHD. Ex vivo studies showed that QUIN caused hyperphosphorylation of neurofilament subunits (NF) and glial fibrillary acidic protein (GFAP), IF of neurons and astrocytes, respectively. These effects were dependent on the activation of ionotropic and metabotropic glutamate receptors, Ca2 + influx through voltage-dependent Ca2 + (VDCC) and the kinase-dependent and independent of activation of second messengers. Moreover, in vitro studies showed that the change in phosphorylation of neural IFs is accompanied by reorganization of the neuronal and astroglial cytoskeleton by mechanisms involving Ca2 +. The effects on the neuronal cytoskeleton were completely reversed by the conditioned medium of astrocytes treated with QUIN. Also, the study with co-cultured astrocyte-neuron showed that there is a mutual protection against the effects of QUIN. The set of our data shows that the excitotoxic damage caused by QUIN by increasing the influx of Ca2 + into the cytoplasm can be a major contributor to the misregulation of cascades of intracellular signaling directed to the cytoskeleton, making the cytoskeleton an important target for the actions of QUIN in brain of young rats. The formation of excitotoxicity, the disruption of cytoskeletal homeostasis and changes in cell tissue appear to be steps in the initial damage caused by QUIN and may be associated with behavioral deficits observed in the animals. We believe that these findings have contributed to a better understanding of the molecular mechanisms involved in the neurotoxicity caused by QUIN in young rats and we expect that the continuation of this study can contribute to the better understanding of the molecular basis of JHD

    Efeitos da administração intraestriatal aguda de ácido quinolítico sobre o citoesqueleto de células neurais de ratos

    Get PDF
    No presente estudo nós investigamos o efeito in vivo da injeção intraestriatal de ácido quinolínico (AQ) sobre proteínas do citoesqueleto de astrócitos e neurônios de ratos jovens 30 minutos após a infusão. Injeção intraestriatal de AQ é um modelo excitotóxico da doença de Huntington (DH). Nossos resultados mostraram que o AQ (150μmol/0.5μL) aumentou significativamente a fosforilação in vitro da subunidade de baixo peso molecular dos neurofilamentos (NF-L) e da proteina glial fibrilar ácida (GFAP) de neurônios e astrócitos, respectivamente. Este efeito foi mediado pela proteína quinase AMPc-dependente (PKA), proteina quinase C (PKC) e proteina quinase Ca2+/calmodulina-dependente II (PKCaMII). Em contraste, proteínas quinases ativadas por mitógeno (MAPK) não foram ativadas pela infusão com AQ. Além disso, o pré-tratamento com MK-801 (0.25 mg/kg i.p), antagonista específico dos receptores N-metil-D-aspartato (NMDA); com o antioxidante L-NAME (60 mg\kg\day) e com o difenildisseleneto (PheSe)2 (0.625 mg\kg\dia) preveniram totalmente a hiperfosforilação induzida pelo AQ. Nós também observamos que o sítio de fosforilação Ser55 localizado no domínio N-terminal da NF-L, descrito como um sítio regulatório da associação dos NF in vivo, foi alvo da hiperfosforilação induzida pelo AQ. Este efeito foi totalmente prevenido por MK801, pelo inibidor de PKA, H89 e pelo (PheSe)2, enquanto que staurosporina, um inibidor de PKC, preveniu apenas parcialmente a fosforilação da Ser55. O inibidor de PKCaMII (KN93) e o antioxidante L-NAME não preveniram a hiperfosforilação da Ser55 pelo AQ. Portanto, nós presumimos que a hiperfosforilação da NF-LSer55 pode representar os primeiros passos na cascata fisiopatológica dos eventos deletérios exercidos pelo AQ no estriado de ratos. Nossas observações também indicam que os eventos mediados pelo receptor NMDA e por estresse oxidativo podem estar relacionados com a hiperfosforilação das proteínas do citoesqueleto observadas, com importantes implicações para as funções cerebrais.In the present study we investigated the effect of in vivo intrastriatal injection of quinolinic acid (QA) on rat cytoskeleton proteins in astrocytes and neurons of young rats at early stages (30 min) after infusion. Intrastriatal QA injection is an excitotoxic model of Huntington´s Disease (HD). Results showed that QA (150μmol/0.5μL) significantly increased the in vitro phosphorylation of the low molecular weight neurofilament subunit (NF-L) and the glial fibrillary acidic protein (GFAP) of neurons and astrocytes, respectively. This effect was mediated by cAMP-dependent protein kinase A (PKA), protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase II (PKCaMII). In contrast, mitogen activated protein kinases (MAPK) were not activated by QA infusion. Furthermore, the specific N-methyl-D-aspartate (NMDA) antagonist MK-801 (0.25 mg/kg i.p), the antioxidant L-NAME (60 mg\kg\day), and diphenyldiselenide (PheSe)2 (0.625 mg\kg\day) injected prior to QA infusion totally prevented QA-induced hyperphosphorylation of cytoskeletal proteins. We also observed that QA-induced hyperphosphorylation was targeted at the Ser55 phosphorylating site on NF-L head domain, described as a regulatory site for NF assembly in vivo. This effect was fully prevented by MK801, by the PKA inhibitor H89 and by (PheSe)2, whereas staurosporine (PKC inhibitor) only partially prevented Ser55 phosphorylation. The PKCaMII inhibitor (KN93) and the antioxidant L-NAME failed to prevent the hyperphosphorylation of Ser55 by QA infusion. Therefore, we presume that QA-elicited NF-LSer55 hyperphosphorylation of the neural cytoskeleton achieved by intrastriatal QA injection could represent an early step in the pathophysiological cascade of deleterious events exerted by QA in rat striatum. Our observations also indicate that NMDA-mediated Ca2+ events and oxidative stress may be related to the altered protein cytoskeleton hyperphosphorylation observed with important implications for brain function

    Mitotically heritable effects of BMAA on striatal neural stem cell proliferation and differentiation

    No full text
    The widespread environmental contaminant beta-methylamino-L-alanine (BMAA) is a developmental neurotoxicant that can induce long-term learning and memory deficits. Studies have shown high transplacental transfer of 3H-BMAA and a significant uptake in fetal brain. Therefore, more information on how BMAA may influence growth and differentiation of neural stem cells is required for assessment of the risk to the developing brain. The aim of this study was to investigate direct and mitotically inherited effects of BMAA exposure using primary striatal neurons and embryonic neural stem cells. The neural stem cells were shown to be clearly more susceptible to BMAA exposure than primary neurons. Exposure to 250 mu M BMAA reduced neural stem cell proliferation through apoptosis and G2/M arrest. At lower concentrations (50-100 mu M), not affecting cell proliferation, BMAA reduced the differentiation of neural stem cells into astrocytes, oligodendrocytes, and neurons through glutamatergic mechanisms. Neurons that were derived from the BMAA-treated neuronal stem cells demonstrated morphological alterations including reduced neurite length, and decreased number of processes and branches per cell. Interestingly, the BMAA-induced changes were mitotically heritable to daughter cells. The results suggest that early-life exposure to BMAA impairs neuronal stem cell programming, which is vital for development of the nervous system and may result in long-term consequences predisposing for both neurodevelopmental disorders and neurodegenerative disease later in life. More attention should be given to the potential adverse effects of BMAA exposure on brain development

    PFOS induces proliferation, cell-cycle progression, and malignant phenotype in human breast epithelial cells

    No full text
    Perfluorooctanesulfonic acid (PFOS) is a synthetic fluorosurfactant widely used in the industry and a prominent environmental toxicant. PFOS is persistent, bioaccumulative, and toxic to mammalian species. Growing evidence suggests that PFOS has the potential to interfere with estrogen homeostasis, posing a risk of endocrine-disrupting effects. Recently, concerns about a potential link between PFOS and breast cancer have been raised, but the mechanisms underlying its actions as a potential carcinogen are unknown. By utilizing cell proliferation assays, flow cytometry, immunocytochemistry, and cell migration/invasion assays, we examined the potentially tumorigenic activity of PFOS (100 nM–1 mM) in MCF-10A breast cell line. The results showed that the growth of MCF-10A cells exposed to 1 and 10 µM PFOS was higher compared to that of the control. Mechanistic studies using 10 µM PFOS demonstrated that the compound promotes MCF-10A proliferation through accelerating G0/G1-to-S phase transition of the cell cycle after 24, 48, and 72 h of treatment. In addition, PFOS exposure increased CDK4 and decreased p27, p21, and p53 levels in the cells. Importantly, treatment with 10 µM PFOS for 72 h also stimulated MCF-10A cell migration and invasion, illustrating its capability to induce neoplastic transformation of human breast epithelial cells. Our experimental results suggest that exposure to low levels of PFOS might be a potential risk factor in human breast cancer initiation and development
    corecore