2,079 research outputs found

    Longitudinal transformation of nitrogen and carbon in the hyporheic zone of an N-rich stream: A combined modelling and field study

    Get PDF
    A combined modelling and field study approach was used to examine biogeochemical functioning of the hyporheic zone in two gravel bars in an N-rich fourth-order stream (River Hers, south-west France). Surfacewater and interstitial water were sampledmonthly (August 1994–January 1995), the latter in a network of 29 piezometers in the first gravel bar and 17 in the second. In both gravel bars, the hyporheic zone was created only by advected channelwater without any connectionwith groundwater. Longitudinal chemical profiles of Dissolved Organic Carbon (DOC), nitrate (NO3–N), ammonium (NH4–N) and Dissolved Oxygen (DO) were established for both gravel bars. Ambient and potential denitrification weremeasured in the laboratory during the same period using the acetylene inhibition technique. Factors limiting denitrification were also examined by testing the separate effects of nitrate or nitrate + carbon additions. A 1D reactive-transport model was used to simulate longitudinal transformation of nitrogen in the hyporheic zone, and to estimate the role of organic matter (DOC and POC) in the biogeochemical functioning of the hyporheic zone. Denitrification measurements with nitrate and nitrate + carbon additions both showed increased denitrification, suggesting that denitrification might not be C-limited at this site. Observations and model results showed the hyporheic zone to be a sink of DOC and nitrate, but DOC consumption appeared insufficient to explain nitrate depletion measured in the two gravel bars. Field data were better modelled when an additional DOC source from the POC fraction degraded by anaerobic respiration was included in the model

    Insulin-like growth factor binding proteins and IGFBP proteases: A dynamic system regulating the ovarian folliculogenesis

    Get PDF
    International audienceThe aim of the present article is to update our understanding of the expression of the insulin-like growth factor binding proteins (IGFBPs), IGFBP proteases and their implication in the different processes of ovarian folliculogenesis in mammals. In the studied species, IGFs and several small-molecular weight IGFBPs (in particular IGFBP-2 and IGFBP-4) are considered, respectively, as stimulators and inhibitors of follicular growth and maturation. IGFs play a key role in sensitizing ovarian granulosa cells to FSH action during terminal follicular growth. Concentrations of IGFBP-2 and IGFBP-4 in follicular fluid strongly decrease during follicular growth, leading to an increase in IGF bioavailability. Inversely, atresia is characterized by an increase of IGFBP-2 and IGFBP-4 levels, leading to a decrease in IGF bioavailability. Changes in intrafollicular IGFBPs content are due to variations in mRNA expression and/or proteolytic degradation by the pregnancy-associated plasma protein-A (PAPP-A), and likely participates in the selection of dominant follicles. The identification of PAPP-A2, as an IGFBP-3 and -5 protease, and stanniocalcins (STCs) as inhibitors of PAPP-A activity extends the IGF system. Studies on their implication in folliculogenesis in mammals are still in the early stages

    Application of the arbitrary lagrangian eulerian formulation to the numerical simulation of stationary forming processes with dominant tangential material motion

    No full text
    International audienceIn this paper, an Arbitrary Lagrangian Eulerian (ALE) formulation has been developed for 3D FEM simulations of quasi-stationary metal forming processes (such as drawing, rolling, extrusion ...). In such a formulation, the mesh is updated independently from the material motion, allowing the mesh to be continuously optimized. It is however difficult in 3D to relocate mesh nodes such that the movement of the material domain boundaries can be followed. In general, it is achieved by setting the normal component of the mesh velocity equal to the normal component of the material velocity for each boundary node. This initial choice was found unsatisfactory for processes with dominant tangential velocity. For such cases, a new procedure has been implemented in the FORGE3 (R) software [1]. The surface nodes are projected onto the intermediate surface computed at the end of the Lagrangian virtual updating stage. Different strategies are developed to project the nodes, according to the topological entities they belong to (vertices, edges, plane or curved surfaces). A comparison for wire and bar drawing processes is provided between a standard Updated Lagrangian formulation [1] and the present ALE formulation, showing very similar results (geometry shape, drawing stress, strain rates ...)

    Optomechanical assessment of photorefractive corneal cross-linking via optical coherence elastography.

    Get PDF
    Purpose: Corneal cross-linking (CXL) has recently been used with promising results to positively affect corneal refractive power in the treatment of hyperopia and mild myopia. However, understanding and predicting the optomechanical changes induced by this procedure are challenging. Methods: We applied ambient pressure modulation based optical coherence elastography (OCE) to quantify the refractive and mechanical effects of patterned CXL and their relationship to energy delivered during the treatment on porcine corneas. Three different patterned treatments were performed, designed according to Zernike polynomial functions (circle, astigmatism, coma). In addition, three different irradiation protocols were analyzed: standard Dresden CXL (fluence of 5.4 J/cm2), accelerated CXL (fluence of 5.4 J/cm2), and high-fluence CXL (fluence of 16.2 J/cm2). The axial strain distribution in the stroma induced by ocular inflation (Δp = 30 mmHg) was quantified, maps of the anterior sagittal curvature were constructed and cylindrical refraction was assessed. Results: Thirty minutes after CXL, there was a statistically significant increase in axial strain amplitude (p < 0.050) and a reduction in sagittal curvature (p < 0.050) in the regions treated with all irradiation patterns compared to the non-irradiated ones. Thirty-6 hours later, the non-irradiated regions showed compressive strains, while the axial strain in the CXL-treated regions was close to zero, and the reduction in sagittal curvature observed 30 minutes after the treatment was maintained. The Dresden CXL and accelerated CXL produced comparable amounts of stiffening and refractive changes (p = 0.856), while high-fluence CXL produced the strongest response in terms of axial strain (6.9‰ ± 1.9‰) and refractive correction (3.4 ± 0.9 D). Tripling the energy administered during CXL resulted in a 2.4-fold increase in the resulting refractive correction. Conclusion: OCE showed that refractive changes and alterations in corneal biomechanics are directly related. A patient-specific selection of both, the administered UV fluence and the irradiation pattern during CXL is promising to allow customized photorefractive corrections in the future

    Assurer l'équité de l'évaluation pour un cours donné par plusieurs professeurs

    Get PDF
    Comprend des références bibliographique

    Efficient implementation of a structured total least squares based speech compression method

    Get PDF
    AbstractWe present a fast implementation of a recently proposed speech compression scheme, based on an all-pole model of the vocal tract. Each frame of the speech signal is analyzed by storing the parameters of the complex damped exponentials deduced from the all-pole model and its initial conditions. In mathematical terms, the analysis stage corresponds to solving a structured total least squares (STLS) problem. It is shown that by exploiting the displacement rank structure of the involved matrices the STLS problem can be solved in a very fast way. Synthesis is computationally very cheap since it consists of adding the complex damped exponentials based on the transmitted parameters.The compression scheme is applied on a speech signal. The speed improvement of the fast vocoder analysis scheme is demonstrated. Furthermore, the quality of the compression scheme is compared with that of a standard coding algorithm, by using the segmental signal-to-noise ratio

    CDK4 T172 phosphorylation is central in a CDK7-dependent bidirectional CDK4/CDK2 interplay mediated by p21 phosphorylation at the restriction point

    Get PDF
    Cell cycle progression, including genome duplication, is orchestrated by cyclin-dependent kinases (CDKs). CDK activation depends on phosphorylation of their T-loop by a CDK-activating kinase (CAK). In animals, the only known CAK for CDK2 and CDK1 is cyclin H-CDK7, which is constitutively active. Therefore, the critical activation step is dephosphorylation of inhibitory sites by Cdc25 phosphatases rather than unrestricted T-loop phosphorylation. Homologous CDK4 and CDK6 bound to cyclins D are master integrators of mitogenic/oncogenic signaling cascades by initiating the inactivation of the central oncosuppressor pRb and cell cycle commitment at the restriction point. Unlike the situation in CDK1 and CDK2 cyclin complexes, and in contrast to the weak but constitutive T177 phosphorylation of CDK6, we have identified the T-loop phosphorylation at T172 as the highly regulated step determining CDK4 activity. Whether both CDK4 and CDK6 phosphorylations are catalyzed by CDK7 remains unclear. To answer this question, we took a chemical-genetics approach by using analogue-sensitive CDK7(as/as) mutant HCT116 cells, in which CDK7 can be specifically inhibited by bulky adenine analogs. Intriguingly, CDK7 inhibition prevented activating phosphorylations of CDK4/6, but for CDK4 this was at least partly dependent on its binding to p21(cip1). In response to CDK7 inhibition, p21-binding to CDK4 increased concomitantly with disappearance of the most abundant phosphorylation of p21, which we localized at S130 and found to be catalyzed by both CDK4 and CDK2. The S130A mutation of p21 prevented the activating CDK4 phosphorylation, and inhibition of CDK4/6 and CDK2 impaired phosphorylations of both p21 and p21-bound CDK4. Therefore, specific CDK7 inhibition revealed the following: a crucial but partly indirect CDK7 involvement in phosphorylation/activation of CDK4 and CDK6; existence of CDK4-activating kinase(s) other than CDK7; and novel CDK7-dependent positive feedbacks mediated by p21 phosphorylation by CDK4 and CDK2 to sustain CDK4 activation, pRb inactivation, and restriction point passage

    Proteome analysis of the UVB-resistant marine bacterium Photobacterium angustum S14

    Get PDF
    The proteome of the marine bacterium Photobacterium angustum S14 was exposed to UVB and analyzed by the implementation of both the post-digest ICPL labeling method and 2D-DIGE technique using exponentially growing cells. A total of 40 and 23 proteins were quantified in all replicates using either the ICPL or 2D-DIGE methods, respectively. By combining both datasets from 8 biological replicates (4 biological replicates for each proteomics technique), 55 proteins were found to respond significantly to UVB radiation in P. angustum. A total of 8 UVB biomarkers of P. angustum were quantified in all replicates using both methods. Among them, the protein found to present the highest increase in abundance (almost a 3-fold change) was RecA, which is known to play a crucial role in the so-called recombinational repair process. We also observed a high number of antioxidants, transport proteins, metabolism-related proteins, transcription/translation regulators, chaperonins and proteases. We also discuss and compare the UVB response and global protein expression profiles obtained for two different marine bacteria with trophic lifestyles: the copiotroph P. angustum and oligotroph Sphingopyxis alaskensis

    Tackling High Variability in Video Surveillance Systems through a Model Transformation Approach

    Get PDF
    taux acceptation 44%International audienceThis work explores how model-driven engineering techniques can support the configuration of systems in domains presenting multiple variability factors. Video surveillance is a good candidate for which we have an extensive experience. Ultimately, we wish to automatically generate a software component assembly from an application specification, using model to model transformations. The challenge is to cope with variability both at the specification and at the implementation levels. Our approach advocates a clear separation of concerns. More precisely, we propose two feature models, one for task specification and the other for software components. The first model can be transformed into one or several valid component configurations through step-wise specialization. This paper outlines our approach, focusing on the two feature models and their relations. We particularly insist on variability and constraint modeling in order to achieve the mapping from domain variability to software variability through model transformations
    • 

    corecore