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Abstract

The proteome of the marine bacterium Photobacterium angustum S14 was exposed to UVB and analyzed by the
implementation of both the post-digest ICPL labeling method and 2D-DIGE technique using exponentially growing cells. A
total of 40 and 23 proteins were quantified in all replicates using either the ICPL or 2D-DIGE methods, respectively. By
combining both datasets from 8 biological replicates (4 biological replicates for each proteomics technique), 55 proteins
were found to respond significantly to UVB radiation in P. angustum. A total of 8 UVB biomarkers of P. angustum were
quantified in all replicates using both methods. Among them, the protein found to present the highest increase in
abundance (almost a 3-fold change) was RecA, which is known to play a crucial role in the so-called recombinational repair
process. We also observed a high number of antioxidants, transport proteins, metabolism-related proteins, transcription/
translation regulators, chaperonins and proteases. We also discuss and compare the UVB response and global protein
expression profiles obtained for two different marine bacteria with trophic lifestyles: the copiotroph P. angustum and
oligotroph Sphingopyxis alaskensis.
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Introduction

Research on the environmental effects of solar ultraviolet

radiation in both terrestrial and aquatic ecosystems was largely

stimulated by the discovery of an area of ozone depletion over

Antarctica in the 1980’s, the so-called ‘ozone hole’. The primary

consequence of this phenomenon is that an increased amount of

UVB radiation (280–315 nm) reaches the Earth’s surface in high-

and middle-latitude regions, and this is likely to increase the

exposure of organisms in surface waters to UVB radiation [1,2].

The response of heterotrophic bacteria to UV radiation involves a

highly organized series of intracellular events, enabling them to

attenuate the damaging impact of UVB radiation. It is well known

that UVB radiation causes widespread damage in cells, and it also

modulates the expression of many genes. Unlike transcriptomic

approaches, only a few quantitative proteomics studies have

explored the impact of damaging solar radiation on microorgan-

isms. For example, a quantitative proteomic approach with 2D

gels was used to compare the proteomes of irradiated and

unirradiated Deinococcus radiodurans bacteria to identify the mech-

anisms of their extreme radioresistance and DNA repair [3,4]. In

this study, only 21 proteins correctly identified by mass spectrom-

etry showed significant changes under radiation; however, none of

the proteins were known to be relevant for radioresistance, except

for the single-stranded DNA-binding protein (SSB) and PprA [5].

Another study was performed on the cyanobacterium Nostoc

commune, a desiccation-tolerant terrestrial cyanobacterium, and its

protein expression map was analyzed during growth under

continuous UVB radiation using 2D gels [6]. A total of 27

UVB-induced proteins were identified that were mainly involved

in lipid and carbohydrate metabolism and regulatory pathways.

This study supported the idea that short-term stress and

acclimation responses to damaging radiation are two completely

different and remarkably complex strategies [6]. Another study

focused on the light adaptation of the abundant marine

cyanobacterium Prochlorococcus marinus MED4; this was assessed

by a quantitative proteomic approach using iTRAQ [7]. The

microorganism was cultured under three light intensities (low,

medium and high), and fifteen proteins were deemed to be

significantly influenced by changes in light intensity, especially

photosystem-related proteins, which were down-regulated, and

stress-related chaperones, which were up-regulated in high light

compared with low light treatment. Finally, a comprehensive study

of the effects of solar radiation on the oligotrophic marine

bacterium Sphingopyxis alaskensis was recently assessed using the

iTRAQ method [8]. The key factors implicated in an adaptive

response to solar radiation included DNA-binding proteins,

proteins involved in the detoxification of toxic compounds (such

as glyoxal and reactive oxygen species), iron sequestration proteins

that minimize oxidative stress, chaperones, proteins involved in

nitrogen-related metabolism, and transcriptional/translational

regulators [8]. To determine the species-specific pathways

involved in the UV response and fundamental biological processes

commonly affected in microorganisms, there is still a need for
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more studies on damaging UV radiation using key model of

marine bacteria.

Photobacterium angustum S14 (formerly Vibrio angustum) is a

heterotrophic gram-negative bacterium with a copiotrophic

lifestyle isolated from surface coastal waters in Botany Bay

(Sydney), Australia, and its genome has been fully sequenced

[9]. P. angustum has served as a model for diverse stress studies. It

has been previously reported that in response to starvation, P.

angustum becomes more resistant to a variety of stresses such as

visible light, UV radiation, heavy metal exposure, and tempera-

ture shifts; this is a phenomenon referred to as cross-protection

against secondary stresses [10]. Thus, this bacterium produces a

highly orchestrated response to starvation and stress conditions

[11]. Moreover, P. angustum was previously found to be resistant to

long-term exposure to UVB radiation, and its high level of

resistance was well-correlated with its ability to efficiently repair

the UVB-induced photoproducts during UVB exposure without

any carbon source or photoreactivating light [12]. P. angustum must

have evolved mechanisms of efficient repair for UVB-induced

photoproducts in artificial seawater lacking carbon sources.

Moreover, it is noteworthy that P. angustum was previously found

to accumulate very low levels of cyclobutane pyrimidine dimers

(CPDs) when grown under simulated solar radiation, even though

UVB reduced the growth rate [13]. These latter findings are the

reasons why we decided to construct a quantitative proteomics

map of UVB-treated P. angustum cells. We sought to provide a

profile of the proteins present and the major processes that occur

under exposure to UVB after a given dose of radiation. Thus, the

objective of this study was to examine the UVB response of this

bacterial model using both gel-free and gel-based quantitative

proteomics approaches to maximize the coverage of quantified

proteins.

In this study, we utilized two different quantitative proteomics

methods to screen for key proteins regulated by UVB. As a gel-free

approach, we used the recently developed post-digest Isotope

Coded Protein Labeling (ICPL) method [14]. The post-digest

ICPL method can be classified as a shotgun type of experiment or

a gel-free mass spectrometry (MS)-based method. As a second

quantitative proteomics approach, we used the common gel-based

technology, the two-dimensional difference gel electrophoresis

(2D-DIGE). Both approaches are amine-specific proteomic

strategies. Post-digest ICPL labeling uses heavy and light isotopic

reagents, while the 2D-DIGE method employs a pair of

fluorescent CyDyes. While the relative protein quantification

using the DIGE approach is based on a 2D-gel image analysis

comparing spot volume ratios, the relative peptide quantification

using ICPL is inferred from integrated MS/MS peak areas of the

heavy and light versions of the ICPL-labeled peptides. In this

study, we demonstrate that it is valuable to combine different

proteomics methodologies to reveal the many cellular pathways

affected by UVB radiation.

Materials and Methods

Bacterial growth conditions and UVB radiation treatment
After two precultures, Photobacterium angustum S14 was grown

aerobically in 500 mL of Artificial Sea Water (ASW) supplement-

ed with 3 mM D-glucose (ASW-G), vitamins and trace elements

[15] in a rotary shaker (130 rpm) at 25uC. The growth was

monitored by optical density (OD) measurements at 620 nm. At

the beginning of the mid-log phase (OD = 0.1), cells were

harvested and split into two parts for both the UVB irradiation

and dark control conditions. For this purpose, 120 mL of culture

was placed into a 250-mL quartz flask with a flat top covered with

cellulose acetate (50% transmission at 280 nm) to remove residual

UVC and exposed to UVB lamps (30 W/312 nm, Vilbert

Lourmat, Fisher scientific); another 120 mL was maintained in

darkness as a control. The UVB intensity used in this study

corresponds to 1.05 W/m2. Irradiated cells and their respective

dark controls were mixed with continuous magnetic stirring

(100 rpm) for 1.75 h (corresponding to a UVB dose of 6.6 kJ/m2)

at 25uC. At the end of this period, the OD was measured, and the

cells were harvested for proteomics (Figure 1). The entire volume

of the cultures from both conditions was centrifuged at 8 000 g for

15 min at 4uC. Based on methods previously used in another

marine bacterium, the resulting pellet was washed twice in 1 mL

of 0.2 M sucrose to remove excess salt [16] and freeze-dried at

280uC until use. Protein isolates were subsequently used for either

the post-digest ICPL approach or 2D-DIGE method. For each

proteomics approach, experiments were performed in quadrupli-

cate for a total of eight independent experiments.

Protein extraction and quantification
For the post-digest ICPL method, pelleted cells were resus-

pended in one pellet volume of 6 M guanidine chloride solution,

and cells were broken by sonication on ice (5 cycles of 10 s,

amplitude 60%, 1 pulse rate). The samples were subsequently

centrifuged at 16 000 g at 4uC for 15 min. Protein samples were

reduced with 5 mM Tris (2-carboxyethyl) phosphine at 60uC for

30 min and alkylated with 0.4 mM iodoacetamide at 25uC for

30 min. Proteins were recovered by acetone precipitation (2 h)

with an acetone/protein ratio of 4/1. After a 15-min centrifuga-

tion at 16 000 g and an acetone evaporation, the resulting pellet

was dissolved in 100 mM phosphate buffer (pH 8) containing 2 M

urea. Protein isolation for the 2D-DIGE application was

performed by resuspending the pelleted cells in 1 mL of 2DE

extraction buffer (8 M urea, 2 M thiourea, 4% CHAPS).

Sonication and sample clearing by centrifugation were performed

as mentioned above.

The total protein concentration for both ICPL and 2D-DIGE

was determined using the Bradford method according to the

manufacturer’s instructions, using bovine c-globulin as a protein

standard (Bio-Rad Protein Assay kit, Bio-Rad, Hertfordshire, UK).

Post-digest ICPL labeling
For the gel-free approach, an overnight enzymatic digestion was

conducted with sequencing grade modified trypsin (Promega) at an

enzyme/substrate ratio of 1/25 at 37uC prior to the labeling.

Tryptic peptides were then labeled according to the post-digest

ICPL labeling procedure, which was recently described and

optimized by Leroy and colleagues [14]. Briefly, after enzymatic

digestion, 33 mg of tryptic peptides were submitted for labeling

using 3 mL of ICPL-labeling reagent for 90 min at room

temperature. This first labeling step was followed by the addition

of 1.5 mL of supplemental reagent, and the reaction was allowed to

proceed for 90 additional minutes. The protein samples obtained

from dark-grown cells were labeled with 6-[12C]nicotinoyl-N-

hydroxysuccinimide (light label), while the protein samples

obtained from cells grown under UVB were labeled with 6-

[13C]nicotinoyl-N-hydroxysuccinimide (heavy label). After destroy-

ing any excess reagents according the manufacturer’s instructions,

the two samples were combined, and the resulting labeled peptide

mixture was basified with 2 mL of NaOH (2N) for 20 min to

destroy possible esterification products; subsequently, 2 mL of HCl

(2N) was added to neutralize the sample. The peptide solution was

desalted using HyperSep SpinTip C18, and 40 mg of the digested

proteins were then analyzed by 2D LC-MS/MS.

Proteome Analysis of Photobacterium angustum S14
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2D-DIGE (minimal dye labeling)
We performed 2D Fluorescence Difference Gel Electrophoresis

(2D-DIGE) as a second quantitative proteomic approach with a

gel-based methodology. DIGE experiments were conducted 7

times with 4 different biological replicates and three extra

technical replicates run in parallel. One preparative gel was used

for spot picking; thus, a total of seven analytical DIGE-gels and 1

preparative gel were performed. All the gels were run in only two

batches of migration, and the same internal standard sample was

used for all gels. Fifty-mg aliquots of protein from both the UVB

and dark conditions were labeled with Cy3 or Cy5, respectively,

and a pooled internal standard was systematically labeled with

Cy2. Dye swapping with Cy3 and Cy5 between the two conditions

enabled us to exclude any potential bias from the labeling reaction.

To achieve optimal DIGE labeling and avoid spontaneous thiol

oxidation, all experiments were performed with minimal light

exposure. All the samples were incubated separately with the

corresponding CyDye for 30 min on ice in the dark, and the

reactions were subsequently quenched by the addition of excess

lysine for 10 min. These labeled samples were then combined for

2D-DIGE analysis. Thus, 50 mg of Cy3- and Cy5-labeled samples

were mixed pairwise and pooled together with the internal

standard. For the first dimension, pooled samples containing

150 mg of labeled proteins were mixed with rehydration buffer

[8 M urea, 2 M thiourea, 2% (w/v) CHAPS, 10 mM DTT, 1.2%

pH 4–7 IPG buffer (v/v) and trace bromophenol blue] in a final

volume of 350 mL and left overnight to rehydrate into 18-cm

Immobiline Drystrips (pH 4–7).

Isoelectric focusing was performed at 20uC using IPGphorIII

(GE Healthcare) with a current limit of 50 mA/gel for 1 h at

150 V followed by 1 h at 300 V. A gradient voltage was then

applied for 1 h to reach 1000 V and subsequently for 3 h to reach

a voltage of 8000 V. Finally, the focusing was continued at 8000 V

until a total of 40 kVh had elapsed. Strips were then equilibrated

at room temperature for two intervals of 12 min in an

equilibration buffer [6 M Urea, 2% (w/v) SDS, 30% (v/v)

glycerol and 50 mM Tris-HCl pH 8.6] supplied with 1% (w/v)

DTT, and the strips were subsequently incubated in the same

buffer with 4.6% (w/v) iodoacetamide replacing DTT. Equili-

brated strips were briefly rinsed with running buffer [25 mM Tris,

192 mM glycine and 0.1% (w/v) SDS] and placed onto a 12.5%

precast gel overlaid with agarose solution [0.5% low-melting

agarose and trace bromophenol blue in running buffer]. Electro-

phoresis was performed at 20uC in the dark using a DALT six

electrophoresis system (GE healthcare) at 4 W/gel for 30 min,

followed by 18 W/gel for approximately 6 h until the bromophe-

nol blue dye front reached the bottom of the gel. After the second

dimension of electrophoresis, the gels were rinsed with Milli-Q

water and immediately scanned on a Typhoon FLA 9000 imager

(GE Healthcare) with a 100-mm spot resolution using the

appropriate voltages to ensure no spot saturation. The photo-

multiplier tube setting was in the range of 450 to 600 V. The gels

were subsequently stored at 4uC.

For spot picking, one preparative gel from the same pH range

was run (1 mg of protein lysate each) at the same time as the three

other analytical and technical replicate gels; thus, similar

electrophoretic parameters for the first and second dimension

runs were used for both analytical and preparative gels. The

preparative gel, containing 1 mg of protein, was then stained

overnight with Coomassie brilliant blue and fixed with 40% (v/v)

ethanol and 10% (v/v) acetic acid.

Image Master Platinum (V.2.0) software was used to analyze the

gel images. Gel images were processed with 10 000 expected spots

and spots with volumes higher than 30 000. Seven fluorescent gels

were run with 4 biological and 3 technical replicates; thus, a total

of 21 2D-gel images were obtained and used to calculate average

abundance. Protein spot expression levels that showed a statisti-

cally significant (p,0.01) increase or decrease in 6 of 8 (Cy3 or

Cy5 labeled) gels were accepted as being differentially expressed. A

1.25-fold difference in abundance with a t-test p-value of less than

Figure 1. Summary of the experimental workflow. A. Emission spectrum of the UVB lamps used to irradiate the cultured cells of P. angustum B.
Bacterial cells were collected at the beginning of log phase (OD = 0.1) and cultured either under UVB radiation or in the dark C. After 1.75 h of
incubation, quantitative proteomics was performed by using either gel-free (Post-digest ICPL labeling) or gel-based (2D-DIGE) approaches.
Quantitative data for ICPL were obtained from the MS spectrum (L: Light label: H: Heavy label).
doi:10.1371/journal.pone.0042299.g001
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0.01 was considered significant. Spots identified as significantly up-

or down-regulated on analytical gels were manually excised from

the preparative gels for identification via mass spectrometry.

Destaining, reduction, alkylation, and trypsin digestion of the

proteins were conducted prior to peptide extraction.

Liquid Chromatography Tandem Mass Spectrometry (LC-
MS/MS)

For the gel-free 2D LC-MS/MS approach, dried protein

samples were resuspended in 8 mL of the loading solvent and

separated using the LC Ultimate 3000 system (Dionex). Briefly, six

microliters containing 40 mg of protein were loaded onto a strong

cation exchange (SCX) column (POROS S10, 10 cm, Dionex)

and eluted sequentially using 5, 10, 25, 50, 75, 100, 120, 150, 200,

400, and 800 mM of sodium chloride (20 mL). The eluted fractions

from each salt step were concentrated and desalted on a pre-

column (C18, 15 cm, 75 mm i.d., Dionex) at a rate of

20 mL min21. After a 15-min wash with the loading solvent, the

pre-column was switched into line with an analytical C18 column

containing reverse-phase packing material (Dionex). Peptides were

eluted using a linear gradient of acetonitrile (ACN) at a rate of

0.2 mL min21. The ACN gradient was 4–37% solvent B (80%

ACN, 0.08% formic acid) for 100 min, 37–57% solvent B for

10 min and 57–90% solvent B for 10 min; solvent B was held at

90% for 10 min and then reset to 4%. The eluted peptides were

analyzed online by mass spectrometry as described below.

Regarding the samples obtained from the gel-based 2D-DIGE

approach, purified peptides from digested protein samples were

identified using the LC Ultimate 3000 system (Dionex) coupled

with an HCT ultra plus ion-trap mass spectrometer (Bruker

Daltonics, Germany). Six microliters of each fraction were loaded

onto a pre-column (C18 Trap, 5 mm6300 mm i.d., Dionex) using

the Ultimate 3000 system with a flow rate of 20 mL min21 of

loading solvent (5% (v/v) ACN, 0.025% (v/v) TFA). After a 10-

min desalting step, the pre-column was switched online with the

analytical column (15 cm675 mm i.d., PepMap C18, Dionex) and

equilibrated in 96% solvent A (0.1% (v/v) formic acid in HPLC-

grade water) and 4% solvent B (80% (v/v) ACN, 0.1% (v/v)

formic acid in HPLC-grade water). Peptides were eluted from the

pre-column to the analytical column with a gradient of 4 to 57%

solvent B for 50 min and 57–90% solvent B for 10 min prior to

entering the mass spectrometer. The flow rate was maintained at

0.2 mL min21 with the Ultimate pump. The separated peptides

were analyzed online using an ion-trap mass spectrometer (HCT

ultra plus ion-trap mass spectrometer, Bruker Daltonics, Ger-

many). Positive ions were generated by electrospray, and the

instrument was operated in the information-dependent acquisition

mode described as follows: MS scan range: 300–1500 m/z,

maximum accumulation time: 200 ms, ICC target: 200 000. The

4 most intense ions in the MS scan were selected for MS/MS in

dynamic exclusion mode: mode = ultrascan, absolute thresh-

old = 75 000, relative threshold = 1%, excluded after spectrum

count = 1, exclusion duration = 0.3 min, and averaged spectra = 5.

Data processing generated from mass spectrometry
All MS/MS spectra were analyzed using Mascot (Matrix

Science, London, UK; version 2.2), which was set up to search a

local copy of the P. angustum database (retrieved from NCBI on

December 19th, 2007; 4558 proteins), using fragment precursor

and product ion tolerances of 61.3 and an MS/MS tolerance of

60.5 Da with the maximum number of missed trypsin cleavage

sites set to 2. The oxidation of methionine, the iodoacetamide

derivative of cysteine (Cys-carbamidomethyl) and for gel-free

quantitative proteomics samples, the post-digest ICPL quantifica-

tion chemistry of lysine and the N-terminus were specified in

Mascot as variable modifications. Only identified proteins with

protein scores above the Mowse calculated ion score, defined as

the 95% confidence level, were considered. In this manner, all

spectra that matched the databases with a Mowse score of ,35

were automatically rejected. All matching spectra with Mowse

scores greater than 35 (p,0.05) were manually inspected to ensure

ion progressions of at least 4 consecutive y- or b-type ions,

especially for the proteins identified with one single peptide. Any

matches that did not meet these criteria were rejected. All proteins

identified based on only one peptide were further substantiated by

reporting both the Mascot ion score and an annotated tandem

mass spectrum in the Supporting Information (Figure S1). The

false discovery rate (FDR) was calculated at the peptide level for all

experimental runs using the Decoy option in Mascot; this rate was

estimated to be lower than 2% using the identity threshold as the

scoring threshold system. Regarding the identification of the

excised spots, we extracted all the identified proteins from each

spot and provided the emPAI values, which take into account the

number of sequenced peptides per protein and have been shown

to be directly proportional to protein content [17]. Nevertheless,

the spots in which we identified multiple proteins were considered

to be ‘‘ambiguously quantified’’. Indeed, the protein with the

highest emPAI value is not necessarily the one exhibiting a change

in quantity; thus, emPAI values were simply used as indicative

numbers of protein abundance and did not allow us to

discriminate between different proteins. The relative quantifica-

tion of proteins was achieved during MS/MS by comparing the

estimated abundance of reporter ion peaks that corresponded to

UVB cultured cells (ICPL Heavy) with those of the dark cultured

cells (ICPL Light). MS/MS spectra were searched against the P.

angustum database for protein quantification using Mascot distiller

v.2.3.2 (Matrix Science, London, UK), and the search settings

were similar to those used in Mascot. The global mean and SD of

the protein ratios were calculated for each pair of samples. Peak

lists (.baf files) from the ESI-TRAP data were generated using

Mascot Distiller (Version 3.2.1.0, Matrix Science). The parameters

for the Mascot Distiller quantification procedure were as follows:

correlation threshold: 0.8; integrated method: Simpsons; XIC

threshold: 0.2; Max XIC width: 7; and quality: fraction. To obtain

reliable quantitative data, a manual validation of all the quantified

peptides was performed to filter out co-eluted peptides and/or

noise. A quantified protein was kept only if at least two top ranking

well-identified peptides were provided with a Mascot score of

more than 35. Data were recorded for proteins that showed an

average increase in abundance above 1.25 or below 0.8 in the

UVB sample relative to the dark control; the data significantly

different from the control were denoted with bold characters

(Table 1) using the comparison test provided by the Mascot

distiller. The cut-off for significance in fold-change was determined

based on two technical replicates, and we used 295 commonly

identified proteins to monitor technical variations. Of these

proteins, 87% fell within 25% of the experimental variation

(Figure S2). Therefore, we considered a fold-change of .1.25 or

,0.8 to be a meaningful cut-off for the identification of true

differences in protein level between UVB and dark conditions.

Fluorescent western blot
Immunoblotting was used to confirm the changes in abundance

of the well-conserved protein RecA detected by both 2D-DIGE

and ICPL. Pelleted cells were lysed as described previously, and

the supernatant was used for fluorescent western blotting analysis

with ECL Plus (GE Healthcare). The protein samples were

separated on a NuPAGE 4–12% Bis-Tris gel (Invitrogen), blotted

Proteome Analysis of Photobacterium angustum S14
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Table 1. List of the quantified proteins in four biological replicates using the post-digest ICPL labeling methodology.

Proteins name Rep 1 Rep 2 Rep 3 Rep 4

Ratio SD # Pept Ratio SD # Pept Ratio SD # Pept Ratio SD # Pept

VAS14_02738 hypothetical protein 0.58 0.00 1 0.57 0.00 1 0.51 1.25 2 0.71 0.00 1

VAS14_16916 phosphocarrier protein HPr 0.62 1.33 3 0.67 1.11 5 0.54 1.21 6 0.44 1.20 5

VAS14_04158 arginine ABC transporter 0.68 0.00 1 0.70 0.00 1 0.70 1.28 2 0.99 0.00 1

VAS14_22197 peptide ABC transporter 0.72 1.04 3 0.67 1.16 2 0.59 1.32 2 0.75 1.20 6

VAS14_20236 phosphoglycerate kinase 0.72 1.41 4 0.92 1.21 18 0.73 1.19 19 0.66 1.24 10

VAS14_17626 asparagine synthetase B 0.73 1.31 6 0.72 1.20 9 0.80 1.16 16 1.01 1.32 12

VAS14_07409 carbamoyl-phosphate
synthase small subunit

0.74 1.55 4 0.81 1.37 5 0.85 1.20 6 0.79 1.16 3

VAS14_10219 phosphoenolpyruvate
synthase

0.77 1.25 9 0.81 1.31 20 0.84 1.24 26 0.89 1.24 21

VAS14_02983 putative Cold
shock-like protein

0.77 1.17 5 0.69 1.20 5 0.64 1.11 5 0.56 1.13 6

VAS14_17766 succinyl-CoA
synthetase alpha subunit

0.78 1.27 4 0.83 1.20 9 0.88 1.16 16 0.51 1.60 8

VAS14_07734 putative glutamate
synthase, large subunit

0.78 1.21 10 0.83 1.42 16 0.85 1.24 22 0.84 1.36 18

VAS14_21427 phosphoenolpyruvate
carboxylase

0.79 1.28 15 0.87 1.22 18 0.75 1.33 25 0.91 1.52 22

VAS14_14614 putative Cold
shock-like protein

0.79 1.13 4 0.75 1.20 4 0.81 1.10 4 0.59 1.06 3

VAS14_08175 3-isopropylmalate
dehydrogenase

0.80 1.10 5 0.77 1.27 6 0.82 1.45 8 0.81 1.26 4

VAS14_07404 carbamoyl-phosphate
synthase large subunit

0.80 1.08 12 0.86 1.39 18 0.87 1.16 13 0.88 1.23 15

VAS14_08340 inorganic
pyrophosphatase

0.84 1.30 6 0.80 1.22 6 0.78 1.14 7 0.86 1.26 8

VAS14_21527 triosephosphate
isomerase

0.84 1.13 4 0.71 1.09 7 0.84 1.15 7 0.71 1.32 6

VAS14_10584 3-deoxy-7-
phosphoheptulonate synthase

0.95 1.09 10 0.82 1.26 11 0.80 1.28 14 0.80 1.29 12

VAS14_05653 putative
superoxide dismutase

0.98 0.00 1 0.88 1.23 3 0.78 1.14 5 0.76 1.18 5

VAS14_18824 putative membrane protease
subunits

1.21 1.54 6 1.21 1.03 3 1.28 1.48 6 1.43 1.16 6

VAS14_07124 molecular chaperone DnaK 1.24 1.23 25 1.14 1.24 29 1.06 1.27 27 0.89 1.28 25

VAS14_10439 putative
ATP-dependent RNA helicase

1.26 1.05 3 1.40 1.32 8 1.70 2.12 9 1.30 1.23 6

VAS14_12874 hypothetical outer
membrane protein OmpA

1.28 1.23 7 1.33 1.29 13 0.96 1.19 13 1.07 1.17 8

VAS14_06218 trigger factor 1.31 1.23 17 1.19 1.24 27 1.18 1.22 30 1.15 1.21 29

VAS14_09799 glyoxalase family protein 1.33 1.14 3 1.15 1.04 2 1.21 1.23 2 1.79 1.56 2

VAS14_05963 hypothetical outer
membrane protein OmpA

1.36 1.31 3 1.37 1.42 4 1.00 1.10 6 1.11 1.22 5

VAS14_07334 translation initiation
factor IF-2

1.45 1.38 17 1.27 1.31 15 1.35 1.56 26 1.23 1.46 13

VAS14_18834 RNA-binding protein Hfq 1.46 1.69 2 3.08 0.00 1 1.54 0.00 1 3.45 0.00 1

VAS14_00891 putative glutaredoxin 1 1.47 1.04 2 1.32 1.08 2 0.94 0.00 1 1.41 1.31 2

VAS14_06208 ATP-dependent
protease ATP-binding subunit

1.49 1.14 2 1.26 1.31 5 1.35 1.17 7 1.80 0.00 1

VAS14_21207 putative FKBP-type
peptidyl-prolyl cis-trans isomerase 1

1.50 1.66 2 1.62 1.23 7 1.10 1.26 7 1.18 1.21 5

VAS14_07384 ompL_phopr
porin-like protein L precursor

1.56 1.11 3 0.96 1.22 3 1.35 1.18 5 1.76 1.27 3

VAS14_16369 putative GTP-binding protein 1.64 1.47 3 1.32 1.17 3 1.53 1.17 2 1.45 1.18 2
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onto a nitrocellulose membrane (Hybond-ECL; GE Healthcare)

and probed with a mouse monoclonal antibody against RecA

(1:1000 dilution; Clone ARM321, Clinisciences, France) as the

primary antibody. The amino acid sequence of RecA recognized

by the primary antibody is presented in Figure S3. A sheep

secondary antibody anti-mouse HRP-conjugated F(AB)2 fragment

(GE Healthcare) was added in a 1:5000 dilution. Membranes were

air-dried, scanned using a Typhoon FLA 9000 (GE Healthcare)

and quantified using ImageQuant analysis software (GE Health-

care).

Results and Discussion

Comparison of gel free and gel-based methods
After a 1.75-h incubation, a 43% increase in OD(620 nm) was

observed for the UVB irradiated cells, which was lower than that

observed in the dark control cultures (Figure 1). A total of 993

proteins were identified by liquid chromatography-tandem mass

spectrometry (LC-MS/MS), corresponding to 22% of the theo-

retical proteome of P. angustum (4558 proteins). Four different

biological replicates were conducted for each of the two

quantitative proteomics methods; thus, a total of 8 independent

experiments were successfully performed. Regarding the four

biological replicates conducted for the ICPL approach, an average

of 400 proteins were quantified in each MS run. The distribution

of the fold changes for all the ICPL-labeled proteins in each

biological replicate ranged from 0.15 to 3.34. In total, 422 proteins

were common in at least two different replicates, and 245 were

detected in all four replicates, representing an overall average of

25% of the expressed proteome (Figure 2). In total, 583 ICPL-

Table 1. Cont.

Proteins name Rep 1 Rep 2 Rep 3 Rep 4

Ratio SD # Pept Ratio SD # Pept Ratio SD # Pept Ratio SD # Pept

VAS14_06783 putative antioxidant,
AhpC/Tsa family protein

1.65 1.37 17 1.67 1.24 20 1.41 1.15 17 1.58 1.16 21

VAS14_16756 Na(+)-translocating NADH-
quinone reductase subunit F

1.65 1.29 3 1.37 1.28 6 1.18 1.41 12 1.76 1.11 6

VAS14_14319 hypothetical protein 1.81 0.00 1 1.70 1.34 2 1.79 1.06 2 1.57 1.17 3

VAS14_06728 putative inositol
monophosphate family protein

1.91 1.23 2 1.54 1.79 5 1.86 1.12 8 1.61 0.00 1

VAS14_11709 putative lipoprotein 2.01 1.32 3 3.31 1.06 3 2.01 1.25 4 2.09 2.33 3

VAS14_07364 putative cell division
protein FtsH

2.32 1.26 4 2.28 1.23 5 1.07 1.22 10 1.66 1.19 7

VAS14_20496 recombinase A 2.79 1.15 3 2.91 1.29 8 2.62 1.09 17 3.35 0.00 1

Proteins significantly different from the control within a given biological replicate are indicated with bold characters. Ratio: UVB/Dark, SD: standard deviation, #Pept:
number of peptides used for protein quantification.
doi:10.1371/journal.pone.0042299.t001

Figure 2. Venn diagram showing the non-redundant proteins
quantified in four biological replicates.
doi:10.1371/journal.pone.0042299.g002

Figure 3. Comparison of the different steps of protein
identification and quantification between the two experimen-
tal workflows.
doi:10.1371/journal.pone.0042299.g003
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labeled non-redundant proteins had significant differential abun-

dance compared with the dark control. The common set of

proteins affected by UVB treatment (245 proteins) was manually

inspected to ensure that both identification and relative quanti-

fication were correctly performed. After applying the commonly

used cut-off thresholds of 1.25 and 0.8, only proteins exhibiting

similar regulation profiles in all the replicates were retained as

relevant proteins affected by UVB treatment. In summary,

proteins that did not exhibit consistent up- or down-regulation

between experiments were not considered good markers of UVB

stress and were consequently removed from our final list of

proteins of interest. By using these stringent criteria, a set of 40

proteins of interest were obtained; among these, 19 and 21

proteins were found to be down- and up-regulated, respectively

(Table 1, Figure 3).

In this study, 2D-DIGE was also used to investigate the changes

in protein expression associated with UVB treatment. The images

obtained for each replicate are presented in Figure S4 and

demonstrated a high level of reproducibility from one experiment

to another. A total of 2229 spots were detected and matched

among the seven gels. Of these, 417 spots were quantified and

subjected to manual inspection. After validation, 214 spots were

found to be well resolved in all replicates, and thus considered as

well-quantified. Spots of interest were assigned by filtering out spot

values using the average volume ratios of 1.25-fold changes in

expression and selecting those that had a one-way ANOVA p-

value of 0.01 or less. A total of 130 spots satisfied these

requirements and were highlighted as spots of interest and circled

in green in Figure 4. Among the 130 spots of interest, 76 and 54

spots presented an abundance ratio corresponding to either down-

or up-regulation, respectively (green circles, Figure 4A and 4B,

respectively). Unfortunately, all the spots of interest could not be

excised due to overlapping spots, weak signal intensity, positional

differences between spots, and mismatched protein spots. A total

of 37 spots of interest were finally excised, trypsin digested and

submitted to MS/MS for identification (Figure 3). The 37 spots

yielded 47 MS/MS identifications due to co-migration issues.

Thus, after manual inspection, 23 spots were properly identified,

providing only one protein with a good score. Nine proteins were

found to be up-regulated, and 14 were down-regulated (Table 2,

Figure 3). The co-migration of proteins is the main drawback of

2D gel analysis. For 15 of the spots, it was not possible to ascertain

which of the proteins within the mixture were altered in

abundance; thus, an accurate quantification was not obtained

for the following spots: 2D, 5D, 8D, 9D, 12D, 13D, 21D, 22D,

1U, 2U, 3U, 7U, 9U, 11U, and 14U (Table 2). The proteins

identified as being significantly regulated using ICPL have been

cross-validated using 2D-DIGE, and we identified a total of 23

proteins that were accurately quantified (one protein per spot) in

the 2D-DIGE dataset (Figure 3). To summarize, the total number

of proteins differentially regulated using both approaches was 55

[40+23-8]. Furthermore, cross-validation using both methods

provided some clues regarding co-migratory proteins. Taking the

ICPL data into account, we could hypothesize that for the 1U and

14U spots, the abundance of both the AhpC antioxidant protein

(VAS14_06783) and RecA protein (VAS14_20496), respectively,

were modulated under UVB radiation. Interestingly, the 2D-

DIGE allowed us to distinguish a series of protein isoforms of the

lipoprotein (VAS14_1709) behind spots 12, 12U and 13, 13U

(Figure 4, Table 2). Unfortunately, we were not able to

characterize the post-translational modification of this protein.

The majority of protein isoforms are the result of post-translational

modifications (PTMs) generated by metabolic processes to achieve

specific functions; alternatively, they might be generated by

various stresses. The study of isoforms could be very informative,

and they might represent a new class of biomarkers for a given

stress because one particular stress could be associated with only

one specific isoform of the protein. Interestingly, it was previously

reported that a same PTM (b-Methylthio-aspartic acid) within a

well-conserved ribosomal protein, which has an almost identical

amino acid sequence in E. coli and S. oneidensis, plays a key role in

stabilizing ribosomal structure [18;19]. However, the current

understanding of PTMs in bacteria is very limited, both in terms of

the types of modifications and the frequency of their occurrence,

because these modifications are more often encountered in

eukaryotic cells than prokaryotes.

When comparing both approaches, we demonstrated that the

post-digest ICPL approach enabled the simultaneous identification

and quantification of a high number of proteins, which is suitable

for a large scale screening upon a given stress. Interestingly, we

observed a series of isoforms using the DIGE method, and only

one specific protein state was found to be modified in its relative

abundance ratio; this result was not accessible using ICPL.

Although the DIGE method was more effective for the identifi-

cation of protein isoforms and the statistics for multiplexed

quantification are easier to implement, this technique suffers from

a few major drawbacks. One of these is the co-migration of

proteins that may interfere with accurate protein identification;

another drawback is the difficulty in the analysis of basic,

hydrophobic and large proteins. These two approaches appeared

to be complementary, and each method was useful for discovering

a unique set of novel differentially regulated proteins. The

combination of both approaches offered a great potential for

biomarker discovery; proteins that are significantly up- or down-

regulated and able to be detected by both methods would

constitute good biomarkers. Thus, 8 proteins identified with both

methods and most importantly, regulated in the same manner (4

down-regulated and 4 up-regulated) constitute the UVB stress

biomarkers in P. angustum (Table 3).

Differentially regulated proteins
Proteins that exhibited changes in abundance belonged to many

functional categories and comprised proteins predicted to be

localized to the cytoplasm as well as the cell membrane.

DNA repair
The RecA protein (RecA, VAS14_20496) is the key player

involved in homologous recombination repair, which is one of the

major DNA damage removal process in bacteria. RecA was found

to be significantly up-regulated (3-fold, Table 3; 2-fold, Figure 5)

under UVB treatment compared with the dark control. This result

was obtained using three different quantitative proteomics

approaches: ICPL, 2D-DIGE and fluorescent western blotting

analysis (Table 3, Figure 5). Western blotting thus provided further

confirmation of the robust methodologies used in this study

(Figure 5). Taken together, these results indicate that RecA is a key

UVB-biomarker in P. angustum.

The RecA protein plays multiple roles in several biochemical

pathways, including recombinational processes, SOS induction,

and mutagenic lesion bypass [20]. Briefly, the RecA protein binds

strongly to ssDNA, thus coating the DNA to form a protein-DNA

filament (Figure 6). Due to the presence of several DNA binding

sites, the RecA protein can hold both single and double strands

together simultaneously, thus promoting the exchange of homol-

ogous strands. It was previously demonstrated that radioresistance

in Deinococcus radiodurans was related to its incredibly efficient

system for the repair of double-stranded DNA breaks, which

involved RecA-dependent recombinational repair [21]. Thus, in P.
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angustum, the key protein RecA could also play a critical role in

UVB tolerance. However, cyclobutane pyrimidine dimers (CPDs)

and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are the

predominant lesions caused by UVB radiation [22]. Booth et al.

(2001) demonstrated a good correlation between loss of cell

viability, accumulation of CPDs and RecA expression in Vibrio

natriegens [23]. Interestingly, a previous study showed that CPDs

were a major source of UV-induced DNA breaks [24]. Indeed,

during DNA replication, non-excised and non-split CPDs trigger

the formation of single-stranded gaps in the opposite DNA strand.

Thus, the most prominent pathway induced by CPD lesions is that

associated with DNA double-strand break (DSB) signaling and

repair. Interestingly, in our experiment, RecA was expressed

under dark conditions; this was demonstrated with ICPL, 2D-

DIGE and more strikingly, the western blot analysis (Figure 5).

RecA could thus respond to the continuous presence of DNA

damage in the genome of P. angustum. In contrast, in D. radiodurans,

the low basal level of RecA is not detectable by immunoprobe

because of the critical threshold of expression [25]. However, it

has been demonstrated that high concentrations of the RecA

protein can partially suppress the sensitizing effect of the ddrA

mutation in D. radiodurans exposed to gamma-irradiation, either by

protecting single-stranded tails from degradation or inducing the

recombinational repair pathway more rapidly [25]. Furthermore,

in addition to recombinational repair, RecA is also involved in the

regulation of the SOS response, which in turn regulates other

repair pathways, including excision repair and translesion DNA

synthesis repair. To investigate the role of RecA in the UVB

resistance of P. angustum, it would be valuable to mutate this gene.

Oxidative stress
A number of proteins that were more abundant in the P.

angustum grown under UVB can be linked to the prevention of or

the response to oxidative stress. During UVB exposure, reactive

oxygen species (ROS) may be formed that subsequently damage

DNA, proteins and membrane lipids. It is therefore not surprising

that P. angustum contains genes to protect itself against oxidative

stress. Proteins more abundant under UVB have been found to

protect against oxidative DNA damage; these proteins include

glutaredoxin, glyoxalase, the antioxidant AhpC and RecA

(Figure 6). Superoxide Dismutase (SOD) (VAS14_05653,

Table 1), which was identified with the post-digest ICPL method

and reliably quantified in all four biological replicates, surprisingly

exhibits a slightly smaller abundance under UVB treatment

compared with the dark control.

In this study, one glutaredoxin (VAS14_00891, Table 1) was

more abundant under UVB treatment. Disulfide bonds are

required for proper protein folding and enhance protein stability

and/or activity. The formation and reduction of disulfide bonds is

catalyzed by specialized thiol-disulfide exchanging enzymes that

contain an active site, and the major enzymes responsible for this

process are thioredoxins and glutaredoxins. Glutaredoxins are

small redox enzymes that are oxidized by substrates and use

glutathione as a cofactor. They are subsequently regenerated by

glutathione, and the oxidized glutathione is then reduced by

glutathione reductase. Together, these components compose the

glutathione system (Figure 6) [26,27]. Glutaredoxins are also

involved in alternative pathways, such as the formation of

deoxyribonucleotides for DNA synthesis (by reducing the essential

Figure 4. A representative standard 2D gel showing protein spots that were down-regulated (A) and up-regulated (B). Proteins of
interest are circled in green, and excised spots are circled in blue or red according their relative spot volumes (D = down-regulated by UVB; U = up-
regulated by UVB). Green circles correspond to the up- or down-regulated proteins not excised for MS analysis.
doi:10.1371/journal.pone.0042299.g004
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Table 2. Identification of the two-dimensionally separated protein spots of interest with the average fold change and associated
p-values obtained from seven replicates.

Spot Protein name Ratio
p value
(ANOVA) # Peptides Mass Score empAI

4D VAS14_05498 putative oligopeptide ABC transporter,
periplasmic oligopeptide-binding protein

0.34 3.70E-07 24 61324 1118 2.00

20D VAS14_09609 hypothetical protein 0.53 1.51E-04 7 13023 290 3.07

7D VAS14_06013 glyceraldehyde-3-phosphate dehydrogenase 0.53 7.12E-11 19 35441 2084 3.58

8D VAS14_06013 glyceraldehyde-3-phosphate dehydrogenase 0.53 7.12E-11 41 35441 2084 3.58

VAS14_14989 transaldolase 5 35103 274 0.31

6D VAS14_04158 arginine ABC transporter, periplasmic arginine-
binding protein

0.56 2.33E-06 15 26884 729 2.62

13D VAS14_08125 pyruvate kinase 0.57 1.94E-09 16 50710 946 1.13

VAS14_05498 putative oligopeptide ABC transporter,
periplasmic oligopeptide-binding protein

16 61324 534 0.97

15D VAS14_00448 phosphoribosylaminoimidazole synthetase 0.57 3.27E-07 12 37159 521 0.82

14D VAS14_20441 phosphopyruvate hydratase 0.60 4.79E-07 79 45977 4993 7.59

9D VAS14_10584 3-deoxy-7-phosphoheptulonate synthase 0.60 1.07E-06 17 38616 1119 2.16

VAS14_20241 fructose-bisphosphate aldolase 4 38792 165 0.28

16D VAS14_20441 phosphopyruvate hydratase 0.66 6.49E-04 2 45977 50 0.07

19D VAS14_00681 bacterioferritin comigratory protein 0.67 3.40E-07 11 17417 163 1.43

2D VAS14_19086 bifunctional
phosphoribosylaminoimidazolecarboxamide formyltransferase

0.67 1.37E-08 11 57424 674 0.88

VAS14_18544 30S ribosomal protein S1 8 60777 544 0.52

VAS14_17821 arginyl-tRNA synthetase 7 64732 474 0.48

3D VAS14_22197 peptide ABC transporter, periplasmic
peptide-binding protein

0.70 2.77E-06 10 57916 480 0.39

11D VAS14_16581 serine hydroxymethyltransferase 0.70 9.94E-09 24 45287 609 1.68

12D VAS14_16581 serine hydroxymethyltransferase 0.71 7.30E-08 5 45287 422 0.33

VAS14_18544 30S ribosomal protein S1 4 60777 246 0.17

VAS14_06013 glyceraldehyde-3-phosphate dehydrogenase 2 35441 146 0.2

VAS14_22994 glutamine synthetase 3 51536 121 0.2

18D VAS14_21527 triosephosphate isomerase 0.71 2.55E-10 8 26968 374 0.59

1D VAS14_14099 16 kDa heat shock protein A 0.75 2.95E-06 4 16561 325 1.11

10D VAS14_20756 putative 2,3,4,5-tetrahydropyridine-
2-carboxylate N-succinyltransferase

0.75 1.38E-08 15 36213 369 1.4

21D VAS14_05668 aspartate-semialdehyde dehydrogenase 0.75 9.39E-06 13 40791 513 1.18

VAS14_08310 malate dehydrogenase 2 32486 212 0.21

22D VAS14_12994 glycine cleavage system protein T2 0.76 2.85E-04 6 40822 311 0.6

VAS14_09604 acetyl-CoA acetyltransferase 6 41768 316 0.46

5D VAS14_20221 S-adenosylmethionine synthetase 0.79 3.77E-05 2 42360 124 0.16

VAS14_05498 putative oligopeptide ABC transporter,
periplasmic oligopeptide-binding protein

4 61324 180 0.10

17D VAS14_08310 malate dehydrogenase 0.79 4.67E-06 53 32486 2873 7.49

3U VAS14_19241 30S ribosomal protein S3 1.26 5.38E-06 2 25439 86 0.28

VAS14_02743 hypothetical protein 2 30191 67 0.11

VAS14_20076 3-methyl-2-oxobutanoate
hydroxymethyltransferase

2 28835 58 0.12

4U VAS14_19236 50S ribosomal protein L22 1.26 2.73E-05 3 12172 46 0.28

11U VAS14_16921 putative cysteine synthase A 1.33 1.55E-06 7 34364 348 0.74

VAS14_09694 hypothetical ABC transporter, substrate
binding protein

11 36644 226 0.68

12U VAS14_11709 putative lipoprotein 1.33 1.48E-05 11 9172 204 1.62

13U VAS14_11709 putative lipoprotein 1.33 6.75E-06 4 9172 234 1.62

9U VAS14_18941 chaperonin GroEL 1.38 5.27E-07 5 57359 234 0.25
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enzyme ribonucleotide reductase), generation of reduced sulfur

(via 39-phosphoadenylylsulfate reductase), signal transduction, and

defense against oxidative stress [27]. Glyoxalase (VAS14_09799,

Table 1) was found to be up-regulated under UVB radiation.

Glyoxal may be produced through various pathways, including

glucose oxidation, degradation of glycated proteins or lipid

peroxidation, and may impair the function of membranes, proteins

and DNA through alkylation, mutation and crosslinking reactions

[28,29]. If the glyoxal can be removed by the glyoxalase system,

this minimizes the oxidative stress (Figure 6) [30].

The antioxidant Alkyl hydroperoxide reductase (AhpC)/Thiol

specific antioxidant (TSA) (VAS14_06783, Tables 1, 2, 3)

constitutes one biomarker of the UVB response in P. angustum,

exhibiting 1.5-fold changes using the ICPL approach compared

with 2.66-fold changes using 2D-DIGE (note that due to co-

migration issues, we cannot assuredly ascertain the function

behind this spot) (Tables 1, 2, 3). The AhpC protein is responsible

for reducing organic hyperoxides and constitutes an important

enzymatic defense against sulfur-containing radicals [31] and is of

particular interest due to its putative functional role. The

antioxidant AhpC protein will be the focus of future experiments

to more accurately investigate its involvement in the UVB stress

response of P. angustum.

Transport proteins
Three different ATP-binding Cassette (ABC) transporters

involved in amino acid or peptide uptake exhibited a decreased

level of abundance upon exposure to UVB (VAS14_04158;

VAS14_22197; VAS14_05498, Tables 1, 2). Both arginine and

peptide ABC transporters (VAS14_04158 and VAS14_22197)

were characterized as down-regulated UVB biomarkers (Table 3).

Active transport across membranes is a vital function in cells and

often performed by the ABC transporter system, which is involved

in the transport of multiple substrates across membranes, including

Table 2. Cont.

Spot Protein name Ratio
p value
(ANOVA) # Peptides Mass Score empAI

VAS14_22517 bifunctional N-acetylglucosamine-1-phosphate
uridyltransferase

5 48395 102 0.12

8U VAS14_20971 ribosome releasing factor 1.40 2.35E-08 8 20820 431 1.45

15U VAS14_19006 acetyl-coenzyme A synthetase 1.41 5.73E-05 8 72060 556 0.2

5U VAS14_19236 50S ribosomal protein L22 1.50 9.95E-04 2 12172 118 0.28

6U VAS14_08110 hypothetical protein 1.60 4.07E-07 2 16134 137 0.47

7U VAS14_19181 transcription antitermination protein NusG 1.61 1.27E-06 4 16895 218 1.08

VAS14_20971 ribosome releasing factor 2 20820 65 0.16

2U VAS14_00453 uracil phosphoribosyltransferase 1.79 5.24E-04 2 22712 77 0.32

VAS14_06783 putative antioxidant, AhpC/Tsa family protein 3 22576 48 0.32

10U VAS14_07384 ompL_phopr porin-like protein L precursor 1.86 5.08E-06 25 37973 1438 4.79

1U VAS14_19811 stringent starvation protein A 2.66 2.62E-09 3 24257 133 0.47

VAS14_06783 putative antioxidant, AhpC/Tsa family protein 7 22576 118 0.32

14U VAS14_12129 NADH:flavin oxidoreductase 3.29 1.04E-06 11 40302 434 0.61

VAS14_20496 recombinase A 4 37902 78 0.12

The ratio was determined by comparing the peak intensities in LC-MS runs of UVB versus dark conditions (UVB/Dark). The number of peptides assigned a Mascot score
above 35, as well as the protein mass, score and empAI value, are also listed for each identified protein. (D: down-regulated; U: up-regulated).
doi:10.1371/journal.pone.0042299.t002

Table 3. UVB protein biomarkers of P. angustum quantified by both ICPL and 2D-DIGE.

Protein name Ratio (UVB/Dark)

ICPL 2D DIGE

VAS14_04158 arginine ABC transporter 0.76 0.56

VAS14_10584 3-deoxy-7-phosphoheptulonate synthase 0.84 0.60

VAS14_21527 triosephosphate isomerase 0.78 0.72

VAS14_22197 peptide ABC transporter 0.68 0.70

VAS14_06783 putative antioxidant, AhpC/Tsa family protein 1.57 2.66 *
1.79*

VAS14_07384 ompL_phopr porin-like protein L precursor 1.37 1.86

VAS14_20496 recombinase A 2.90 3.29

VAS14_11709 putative lipoprotein 2.30 1.33

*: 2 values are indicated for VAS14_06783 with 2D-DIGE because it was identified under 2 spots (1U, 2U).
doi:10.1371/journal.pone.0042299.t003
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metabolites, proteins and drugs [32]. Similar to what was observed

in the transcriptome of Shewanella oneidensis exposed to ionizing

radiation, amino acid transport was down-regulated in P. angustum

[33]. The repression of amino acid and peptide transport could

decrease the energy requirement in UVB-treated cells and thus

limit the generation of additional ROS [33].

Three other transport proteins classified as outer membrane

proteins (OmpL, VAS14_07384; OmpA VAS14_12874 and

VAS14_05963; Tables 1, 2, 3) were up-regulated under UVB

radiation. The OmpL protein was found to be an up-regulated

UVB biomarker (Table 3). Gram-negative bacteria are surround-

ed by a characteristic additional membrane layer referred to as the

outer membrane, and its main role is usually to serve as a

permeability barrier to prevent the entry of toxic compounds as

well as to allow the influx of nutrients [34]. The outer membrane

proteins act as porins and allow for the efficient diffusion of small

and hydrophilic solutes. Although the specific substrate of the

OmpL channel remains unknown [35], the OmpA channel is the

most well-studied major outer membrane protein of Escherichia coli

and functions as a bacteriophage receptor [36]. Interestingly, a

previous study demonstrated that an OmpA deletion mutant of E.

coli was significantly more sensitive than the wild-type strain to

multiple stresses, such as sodium dodecyl sulfate (SDS), cholate,

acidity and high osmolarity [37]. These results indicated that

OmpA contributes to the structural integrity of the outer

membrane. Thus, the increased abundance of three outer

membrane proteins in UVB-irradiated P. angustum suggests that

the maintenance of a stable outer membrane during exposure to

damaging UVB radiation is important. These proteins are thus

likely to play a vital structural role in P. angustum.

Figure 6. Diagram depicting the cellular pathways influenced by UVB radiation in P. angustum. The up- and down-regulated proteins are
represented in red and blue, respectively.
doi:10.1371/journal.pone.0042299.g006

Figure 5. Detection of the RecA protein (<40 kDa) by
quantitative fluorescent western blot analysis of both UVB-
treated cells and dark control cultures. Four different biological
replicates are shown for each condition.
doi:10.1371/journal.pone.0042299.g005
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Metabolism
Several enzymes that participate in general metabolic pathways,

such as the phosphotransferase system, glycolysis, the Krebs cycle

and amino acid synthesis, were found to be affected by UVB

radiation. Three proteins involved in the phosphotransferase

system were found to be down-regulated under UVB radiation:

the Hpr protein (VAS14_16916), pyruvate kinase (VAS14_08125)

and PEP synthase (VAS14_10219) (Tables 1, 2). This major ATP-

dependent carbohydrate transport system catalyzes the phosphor-

ylation of incoming sugar substrates concomitantly with their

translocation across the cell membrane. The phosphoryl group

from phosphoenolpyruvate (PEP) is transferred to the phosphoryl

carrier protein HPr by enzyme I. Phospho-HPr then transfers the

phosphoryl group to the permease (enzyme II) (Figure 6) [38,39].

Three enzymes involved in the glycolysis pathway were found to

be down-regulated: triosephosphate isomerase (VAS14_21527;

Table 3), glyceraldehyde-3-phosphate dehydrogenase (GADPH,

VAS14_06013, Table 2), and phosphoglycerate kinase (PG kinase,

VAS14_20236, Table 1) (Figure 6), as well as the malate

dehydrogenase involved in the Krebs cycle (VAS14_08310,

Table 2). Overall, a UVB-stressed cell would preferentially use

energy for UV resistance mechanisms (protection/repair) rather

than general metabolism, which is energetically costly. A large

number of enzymes involved in amino acid synthesis, including

aspartate-semialdehyde dehydrogenase (VAS14_05668, Table 2),

asparagine synthase (VAS14_17626, Table 1), the small and large

subunits of carbamoyl-phosphate synthase (VAS14_07409 and

VAS14_07404, Tables 1, 2), glutamate synthase (VAS14_07734,

Table 1), 3-deoxy-7-phosphoheptulonate synthase (VAS14_10584,

Tables 1, 2), serine hydroxymethyl transferase (VAS14_16581,

Table 2), and S-adenosylmethionine synthetase (VAS14_20221,

Table 2) showed a decreased abundance upon UVB irradiation.

The carbon backbones of amino acids come from other major

pathways, such as the glycolysis pathway or Krebs cycle.

Consequently, enzymes involved in amino acid synthesis were

also found to be down-regulated under UVB treatment.

In contrast, the NADH-quinone reductase (VAS14_16756,

Table 1), which functions as a molecular energy converter by

catalyzing the electron transfer from NADH to ubiquinone, was

found to be up-regulated under UVB by approximately 1.5-fold.

The significant amount of energy released from the oxidation of

NADH allows for the pumping of sodium ions instead of protons

[40,41]. The respiratory chain of marine bacteria requires Na+ for

maximum activity. Subsequently, the electrochemical gradient

generated by the sodium supplies energy that can be used for a

wide range of diverse functions, such as chemical (ATP) synthesis,

osmotic activities, toxin efflux and motility [40,41]. By increasing

the pumping of Na+, P. angustum would be committing more

energy to UV resistance. Furthermore, it was previously reported

in Helicobacter pylori that NADH-quinone reductase enhances

oxidative stress resistance [42].

Transcription/Translation
The RNA helicase (VAS14_10439, Table 1), which is involved

in nearly all aspects of RNA metabolism, was found to be up-

regulated upon UVB stress. RNA helicases catalyze the separation

of double-stranded DNA and RNA and function as transcriptional

activators [43]. The RNA chaperone Hfq (VAS14_18834, Table 1)

presented a higher abundance under UVB treatment. This protein

is known to bind small regulatory non-coding RNA (sRNAs) and

facilitate post-transcriptional gene regulation by helping these

sRNA identify their mRNA targets during stress responses

[44,45,46]. Hfq was also found to bind tRNA and the poly(A)

tail of mRNA [47,48]. The sRNA-mRNA duplex inhibits mRNA

function by increasing mRNA degradation, decreasing mRNA

translation, or both [49]. Interestingly, it has been previously

reported that an hfq mutant of E. coli exhibited pleiotropic

phenotypes, including an increased sensitivity to UV radiation

[50]. It has also been reported that the Hfq protein modulates the

sigmaE-mediated envelope stress response and sigma32-mediated

cytoplasmic stress response in E. coli [51]. Thus, the transcriptional

machinery may also play an important role in stress response

pathways.

Several proteins associated with translation (Initiation factor IF2

VAS14_07334; NusG VAS14_19181; and the ribosomal proteins

VAS14_19236 and VAS14_18779; Tables 1, 2) were found to be

more abundant under UVB treatment than their respective dark

controls, indicating that these elements play a pivotal role in the

UVB response by modulating translation. An alternative role for

ribosomal proteins as chaperones has been demonstrated in E. coli,

in which they may ensure proper RNA and protein folding [52].

In this study, we determined that the ribosome releasing factor, a

protein that participates in the ribosome pathway, was activated

under UVB irradiation. The ribosome releasing factor

(VAS14_20971, Table 2) is responsible for the release of ribosomes

from mRNA after the termination of protein biosynthesis [53] and

may increase the efficiency of translation by recycling ribosomes

from one round of translation to another. This result suggests that

the persistent activation of the ribosome pathway may play a key

role in cellular responses to UVB radiation [54]. The active

regulation of protein levels inside the cell is critical for the

resistance of P. angustum under UVB radiation.

Taken together, the up-regulation of both transcription and

translation factors and ribosomal proteins indicates that despite

UVB stress conditions, cells successfully maintain the genetic

information required for their successful survival.

Protein folding and proteolysis
Three proteins involved in protein folding and processing,

DnaK (VAS14_07124, Table 1), GroEL (VAS14_18941, Table 2)

and a trigger factor (VAS14_06218, Table 1), exhibited increased

abundance as a result of UVB treatment. The chaperones play

critical roles in the folding of newly synthesized proteins and

refolding of misfolded proteins. The increased level of these

proteins in response to irradiation indicates that an important

mechanism for coping with UV-induced stress in P. angustum is the

maintenance of proper protein function (Figure 6). Previous

studies have indicated a role for GroEL and DnaK in coping with

UV-induced damage in both E. coli and mammalian skin cells

[55,56]. DnaK and GroEL regulate both sigma32 activity and

degradation, thereby allowing sigma32 to indirectly sense unfolded

proteins by sensing chaperone occupancy.

In contrast to chaperones that prevent protein unfolding or

rescue unfolded proteins, proteolytic activity is important for

processing irreversibly damaged or denatured proteins. We found

three proteins (VAS14_18824, VAS14_06208, and

VAS14_07364, Table 1) that shared similarities with proteases;

of these, two proteases have not yet been functionally character-

ized. The FtsH (filamentation temperature sensitive) protein

(VAS14_07364, Table 1) is an ATP-dependent zinc metallopepti-

dase. The FtsH gene of Bacillus subtilis has been identified as a

general stress gene that is transiently induced after a thermal or

osmotic upshift [57] and is essential for cell viability in E. coli [58].

The FtsH protein mediates proteolysis and is also involved in

transport pathways, peroxisome assembly, the cell division cycle,

gene expression [58], insertion of proteins into membranes and the

disassembly/oligomerization of protein complexes [59]. Further-

more, FtsH was found to play a crucial role in degrading unneeded
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or damaged membrane proteins and also targets the cytoplasmic

signaling factor sigma32 (s32). The FtsH protease controls

s32stability [60], and the DnaK and GroEL chaperone machines

control s32 activity [60,61], thus ensuring homeostatic control.

However, the s32 factor regulates the expression of heat shock

promoters and overaccumulates in the absence of FtsH [60,61].

Thus, it would not be surprising if the increased abundance of

both protein chaperones (DnaK and GroEL) along with the FtsH

protease were linked to the down-regulation of the heat/cold

shock protein, as explained by a decrease in the abundance of the

s32 factor. In P. angustum, one heat shock protein (VAS14_14099)

and two cold shock proteins (VAS14_ 02983 and VAS14_14614)

were found to be down-regulated by UVB treatment (Figure 6).

Because a large number of other stress conditions induce the

HSPs, this response is often referred to as the universal stress

response [62].

Hypothetical proteins
Four of the 55 proteins of interest were identified as hypothetical

proteins and found to be either down- (VAS14_02738, ,1.70 fold,

Table 1; VAS14_09609, 1.90 fold, Table 2) or up-regulated

(VAS14_14319, ,1.75 fold, Table 1; VAS14_ 08110, 1.60 fold,

Table 2) under UVB radiation. These proteins could be quantified

by both gel-free and gel-based methods and piqued our interest

because they are fully hypothetical proteins with no conserved

domains; they also exhibited greater than 1.5-fold changes in

expression upon exposure to UVB radiation. Furthermore, two

other putative proteins that contained conserved domains but had

no associated functions were found to be up-regulated under UVB

radiation (putative GTP binding protein, VAS14_16369, ,1.5

fold, Table 1; putative lipoprotein, VAS14_11709, Table 3). The

lipoprotein biomarker quantified using both quantitative proteo-

mics methodologies exhibited various fold changes depending on

the methodology (2.33 with post-digest ICPL and 1.33 with 2D-

DIGE). As mentioned in the previous paragraph, the DIGE

methodology allowed us to detect several isoforms of the putative

lipoprotein, and further experiments are underway to characterize

its function and understand why one isoform is more involved in

the UVB response than the other. Finally, it would be valuable to

perform host expression of the hypothetical proteins to assess their

various functions and conclude if they participate actively in the

UVB resistance of P. angustum.

Comparison of the copiotrophic versus the oligotrophic
bacterial response to UVB stress

Microorganisms have been classified into two main trophic

lifestyles based upon their environment and main physiological

traits. Copiotrophic microorganisms such as P. angustum are

specialized for life in nutrient-enriched habitats of the sea, while

oligotrophic bacteria are specifically adapted to life in low-nutrient

environments [63,64]. A recent study has highlighted the key

differences in the genomes of two marine bacteria: Sphingopyxis

alaskensis RB22456, an abundant oligotrophic alpha-proteobacter-

ium, versus the copiotrophic gamma-proteobacterium P. angustum

S14 [9]. Given that UVB penetrates deeper into clear oligotrophic

open oceans compared with eutrophic coastal and estuarine waters

[65], it would not have been surprising to observe a greater level of

resistance in oligotrophic bacteria, which are hypothetically better

adapted to cope with UVB than copiotrophic prokaryotes.

Nevertheless, we previously reported that the UVB response of

these bacteria, which have evolved two entirely different trophic

lifestyles, was more subtle than first expected. We demonstrated

that P. angustum and S. alaskensis may have very distinct strategies

for resistance to UV radiation. Although S. alaskensis presented a

very efficient photoenzymatic repair system, no significant

evidence of overexpression of proteins directly involved in DNA

repair (i.e., photolyase) was observed in the proteomics approach.

Indeed, two proteins involved in DNA repair (DNA repair RadA:

Sala_1806; DNA repair RecN: Sala_0546) were identified in the

expressed proteome, but these proteins did not have significant

differential abundance under any of the conditions tested [8]. In

contrast to S. alaskensis, the RecA protein was found to play a key

role in the UVB resistance of P. angustum and characterized as one

of the UVB biomarkers. This is one of the most striking differences

between the UV responses of these bacteria. Both bacteria showed

an active response regarding oxidative stress defense, and several

key proteins, including thioredoxin/glutaredoxin, glyoxalase,

glutathione, the antioxidant Ahpc, and several chaperonin

proteins (DnaK, GroES/EL, and the trigger factor), were up-

regulated. When S. alaskensis was treated with UVB, iron and

nitrogen homeostasis appeared to play a more important role than

in UVB-treated cells of P. angustum. P. angustum’s response to UVB

involved a larger number of transporters than the response of S.

alaskensis. Interestingly, it has been previously reported that

copiotrophs have a larger proportion of extracytoplasmic proteins

(i.e., cytoplasmic membrane, periplasmic, outer membrane, and

extracellular proteins) and more diverse array of outer membrane

proteins compared with oligotrophic bacteria [9]. S. alaskensis may

have selected a strategy of protection as opposed to the efficient

strategies for DNA damage removal and replacement of cellular

components selected in P. angustum. Moreover, in addition to its

very efficient DNA repair mechanisms and oxidative stress

protection system, P. angustum exerts tight control over the

structure of its cell membrane and could conserve extra energy

for UV resistance by diverting energy away from the maintenance

of general metabolism. Finally, it should be noted that several

hypothetical proteins must be functionally characterized to further

explore the mechanisms of UVB resistance in P. angustum;

members of this pool of proteins could have some remarkably

interesting roles.

Conclusion
The use of a combined proteomic analysis has allowed us to

identify a set of biomarkers of the UVB stress response in P.

angustum. We have characterized the RecA protein, which is

responsible for efficient DNA damage removal under UVB

radiation in P. angustum. We have observed the deployment of

membrane proteins that may facilitate nutrient exchange and

stabilize the structure of the cell membrane in P. angustum.

Transcription and translation were both tightly regulated, along

with RNA and protein chaperones; this allows for the replacement

of damaged cellular components and proper RNA and protein

folding. The machinery associated with oxidative repair and

protection was also found to be important in UVB-stressed cells of

P. angustum. This proteomics study has allowed us to explore both

the technical aspect of quantitative proteomics methodology and

diverse UVB response strategies of two well-studied marine

microorganisms.

Supporting Information

Figure S1 Annotated tandem mass spectra.

(PDF)

Figure S2 The % variation for the common proteins (295) from

the two technical replicates.

(TIF)
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Figure S3 Alignment of the RecA protein sequence from P.

angustum with its homolog from E. coli. Boxed residues indicates

similar amino acids that are recognized by the primary antibody

against RecA.

(TIF)

Figure S4 2D-DIGE experimental workflow from seven repli-

cates. The three landmarks used for gels matching are indicated in

blue, for the seven standard gels.

(TIF)
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