3,648 research outputs found

    Can a Kasner Universe with a Viscous Cosmological Fluid be Anisotropic?

    Full text link
    A Bianchi type -I metric of Kasner form is considered, when the space is filled with a viscous fluid. Whereas an ideal (nonviscous) fluid permits the Kasner metric to be anisotropic provided that the fluid satisfies the Zel'dovich equation of state, the viscous fluid does not permit the Kasner metric to be anisotropic at all. In the latter case, we calculate the Kasner (isotropic) metric expressed by the fluid's density, pressure, and bulk viscosity, at some chosen instant t=t0t=t_0. The equation of state is also calculated. The present paper is related to a recent Comment of Cataldo and del Campo [Phys. Rev. D, scheduled to April 15, 2000], on a previous work of the present authors [Phys. Rev. D {\bf 56}, 3322 (1997)].Comment: 8 pages, LaTeX, no figures. To appear in PR

    Melting in multilayer adsorbed films

    Get PDF
    We present both an improved model and new experimental data concerning the problem of melting in multilayer adsorbed films. The model treats in a mutually consistent manner all interfaces in a stratified film. This results in the prediction of substrate freezing, a phenomenon thermodynamically analogous to surface melting. We also compare the free energies of stratified films to those of homogeneous films. This leads to an orderly classification of multilayer phase diagrams in the vicinity of the bulk triple point. The results of the model are compared with the experimentally known systems. Of these, only methane/graphite exhibits melting from homogeneous solid to homogeneous liquid in multilayer films. The systems Ne/graphite and Ar/graphite, studied by Zhu and Dash, exhibit surface melting and substrate freezing instead. We observe experimentally, by means of pulsed nuclear magnetic resonance, that melting in methane adsorbed on graphite extends below the film thickness at which the latent heat of melting is known to vanish. The multilayer melting curve in this system is a first-order prewetting transition, extending from triple-point dewetting at bulk coexistence down to a critical point where the latent heat vanishes at about four layers, and apparently extending to thinner films as a higher-order, two-dimensional phase transition. It would therefore seem that methane/graphite is an ideal system in which to study the evolution of melting from two dimensions to three dimensions

    Bound states of 3He at the edge of a 4He drop on a cesium surface

    Get PDF
    We show that small amounts of 3He atoms, added to a 4He drop deposited on a flat cesium surface at zero temperature, populate bound states localized at the contact line. These edge states show up for drops large enough to develop well defined surface and bulk regions together with a contact line, and they are structurally different from the well-known Andreev states that appear at the free surface and at the liquid-solid interface of films. We illustrate the one-body density of 3He in a drop with 1000 4He atoms, and show that for sufficiently large number of impurities, the density profiles spread beyond the edge, coating both the curved drop surface and its flat base and eventually isolating it from the substrate.Comment: 10 pages and 7 figures. Submitted to PR

    Anomaly in the stability limit of liquid helium 3

    Full text link
    We propose that the liquid-gas spinodal line of helium 3 reaches a minimum at 0.4 K. This feature is supported by our cavitation measurements. We also show that it is consistent with extrapolations of sound velocity measurements. Speedy [J. Phys. Chem. 86, 3002 (1982)] previously proposed this peculiar behavior for the spinodal of water and related it to a change in sign of the expansion coefficient alpha, i. e. a line of density maxima. Helium 3 exhibits such a line at positive pressure. We consider its extrapolation to negative pressure. Our discussion raises fundamental questions about the sign of alpha in a Fermi liquid along its spinodal.Comment: 5 pages, 3 figure

    Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Get PDF
    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeteris applied for reconstruction of the tracks and energies of individual high energy protons. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to handle an effective proton frequency of 1 MHz by using 500 concurrent proton tracks in each readout frame, which is at the high end range of present similar prototypes. A future further optimized prototype will enable a high-speed and more accurate determination of the ranges of individual protons in a therapeutic beam.Comment: 21 pages, 8 figure

    Atmospheric Ice Accretion on Railway Overhead Powerline Conductors- A Numerical Case Study

    Get PDF
    Ice accretion on railway overhead contact wires/conductors can cause various critical operational and safety issues such as overloading, arc formation, mass imbalance, and wire galloping. The focus of this multiphase numerical study is to understand and analyze the ice accretion physics on railway overhead powerline conductors at various operating conditions. In this regard, two different geometric shape conductors of 12 mm diameter, 1) a grooved shape contact wire (like an actual railway conductor); 2) a standard circular shape contact wire are used. Computational Fluid Dynamics (CFD) based numerical simulations are carried out for both geometric configurations at different operating parameters such as wind speed, Liquid Water Content (LWC), cloud droplet size distribution, Median Volume Diameter (MVD), and atmospheric temperature. Analysis shows that variation in the operating weather parameters for both geometric configurations considerably affects the ice accretion, both in terms of accreted ice thickness and mass

    Path integral Monte Carlo simulation of helium at negative pressures

    Full text link
    Path integral Monte Carlo (PIMC) simulations of liquid helium at negative pressure have been carried out for a temperature range from the critical temperature to below the superfluid transition. We have calculated the temperature dependence of the spinodal line as well as the pressure dependence of the isothermal sound velocity in the region of the spinodal. We discuss the slope of the superfluid transition line and the shape of the dispersion curve at negative pressures.Comment: 6 pages, 7 figures, submitted to Physical Review B Revised: new reference, replaced figure
    • …
    corecore