56 research outputs found
Is Reducing Uncertain Control the Key to Successful Test Anxiety Intervention for Secondary School Students? Findings From a Randomized Control Trial.
The aim of the study was to conduct a randomized control trial of a targeted, facilitated, test anxiety intervention for a group of adolescent students, and to examine the mediating role of uncertain control. Fifty-six participants (male = 19, white = 21, mean age = 14.7 years) were randomly allocated to an early intervention or wait-list control group. Participants completed the Revised Test Anxiety Scale and the Uncertain Control Scale from the Motivation and Engagement Scale at baseline, after the early intervention group had received the intervention, and again, after the wait-list control group had received the intervention. Participants showed moderate to large reductions in the worry and tension components of test anxiety, and uncertain control, after the intervention. The reduction in worry and tension was partially mediated by the reduction in uncertain control. Findings contribute to the evidence base for test anxiety interventions designed for school age populations and highlight uncertain control as an important factor in test anxiety intervention
Infestation of Transgenic Powdery Mildew-Resistant Wheat by Naturally Occurring Insect Herbivores under Different Environmental Conditions
A concern associated with the growing of genetically modified (GM) crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L.) and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low
Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome
Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate that fungi form critical components of putative microbial interaction networks, where the strength and frequency of interactions varies with host taxonomy. Host phylogeny drives differences in overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in mammals and for the bacterial microbiome. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host-microbe interactions.
SIGNIFICANCE STATEMENT Microbes perform vital metabolic functions that shape the physiology of their hosts. However, almost all research to date in wild animals has focused exclusively on the bacterial microbiota, to the exclusion of other microbial groups. Although likely to be critical components of the host microbiome, we have limited knowledge of the drivers of fungal composition across host species. Here we show that fungal community composition is determined by host species identity and phylogeny, and that fungi form extensive interaction networks with bacteria in the microbiome of a diverse range of animal species. This highlights the importance of microbial interactions as mediators of microbiome-health relationships in the wild
- …