297 research outputs found

    The Structure of the Nucleon: Elastic Electromagnetic Form Factors

    Full text link
    Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discuss the outlook for the future.Comment: arXiv admin note: text overlap with arXiv:1301.0905, arXiv:hep-ph/0609004, arXiv:1411.6908 by other author

    Nucleon Electromagnetic Form Factors

    Get PDF
    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations

    Cross sections and transverse single-spin asymmetries in forward jet production from proton collisions at root s=500 GeV

    Get PDF
    Measurements of the production of forward jets from transversely polarized proton collisions at root s = 500 GeV conducted at the Relativistic Heavy Ion Collider (RHIC) are reported. Our measured jet cross section is consistent with hard scattering expectations. Our measured analyzing power for forward jet production is small and positive, and provides constraints on the Sivers functions that are related to partonic orbital angular momentum through theoretical models. (C) 2015 The Authors. Published by Elsevier B.V

    New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei

    Get PDF
    We present new measurements of electron scattering from high-momentum nucleons in nuclei. These data allow an improved determination of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data also include the kinematic region where three-nucleon correlations are expected to dominate

    Use of the calorimeter to improve analyzing power of the reactions, investigating secondary proton polarization

    Get PDF
    The reaction p + CH2 - \u3e forward charge particle + X is used for this aim traditionally. Analyzing power of this reaction falls off as 1/p, where p is the laboratory momentum. At the proton momenta of order 8 GeV/c, which are expected at the JLab experiment, the low analyzing power creates problems for off-line analysis of data. On the other hand, it is well known that the reaction p+p - \u3e p+p has the much more analyzing power. So, the calorimeter is predestinated for suppression of inelastic events in this reaction. In the report it is shown that the problem is solved quite well

    Precise Extraction of the Induced Polarization in the He-4(e,e(l)(p)over-right-arrow)H-3 Reaction

    Get PDF
    We measured with unprecedented precision the induced polarization P-y in He-4(e, e(l)(p) over right arrow)H-3 at Q(2) = 0.8 and 1.3 (GeV/c)(2). The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are overestimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin-independent charge-exchange term in the latter calculation

    Measurement of tensor polarization of deuterons from He-3 -\u3e d plus p breakup at internal momenta up to 0.4 GeV/c

    Get PDF
    The tensor polarization (rho 20) of deuterons emitted in the p(He-3, d)X reaction at 0 degrees in the lab. system was measured at the Saturne National Laboratory in Sac lay, using the SPES-4 spectrometer with the HYPOM polarimeter in the area of its focal plane. The momentum of the detected deuterons was kept fixed at 3.77 GeV/c, while the momentum of the He-3 beam was varied from 4.60 to 5.66 GeV/c, thus providing a range of internal momenta k of the deuteron inside the He-3 from 0 up to 0.4 GeV/c. The obtained data are compared with the theoretical predictions

    Polarization Transfer in Wide-Angle Compton Scattering and Single-Pion Photoproduction from the Proton

    Get PDF
    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of theta(p)(cm) cm = 70 degrees. The longitudinal transfer K-LL, measured to be 0.645 +/- 0.059 +/- 0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is similar to 3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude

    Separated Response Function Ratios in Exclusive, Forward pi(+/-) Electroproduction

    Get PDF
    The study of exclusive pi(+/-) electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio R-L=sigma(pi-)(L) / sigma(pi+)(L) is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of R-T=sigma(pi-)(L) / sigma(pi+)(L) from unity at small -t, to 1/4 at large -t, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to perturbative QCD than the individual cross sections. We have performed the first complete separation of the four unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive p pi(+/-) electroproduction on the deuteron at central Q(2) values of 0.6, 1.0, 1.6 GeV2 at W=1.95 GeV, and Q(2)=2.45 GeV2 at W=2.22 GeV. Here, we present the L and T cross sections, with emphasis on R-L and R-T, and compare them with theoretical calculations. Results for the separated ratio R-L indicate dominance of the pion-pole diagram at low -t, while results for R-T are consistent with a transition between pion knockout and quark knockout mechanisms
    • …
    corecore