9 research outputs found
Understanding eating disorders,
Abstract The outcome in eating disorders remains poor and commonly used methods of treatment have little, if any effect. It is suggested that this situation has emerged because of the failure to realize that the symptoms of eating disorder patients are epiphenomena to starvation and the associated disordered eating. Humans have evolved to cope with the challenge of starvation and the neuroendocrine mechanisms that have been under this evolutionary pressure are anatomically versatile and show synaptic plasticity to allow for flexibility. Many of the neuroendocrine changes in starvation are responses to the externally imposed shortage of food and the associated neuroendocrine secretions facilitate behavioral adaptation as needed rather than make an individual merely eat more or less food. A parsimonious, neurobiologically realistic explanation why eating disorders develop and why they are maintained is offered. It is suggested that the brain mechanisms of reward are activated when food intake is reduced and that disordered eating behavior is subsequently maintained by conditioning to the situations in which the disordered eating behavior developed via the neural system for attention. In a method based on this framework, patients are taught how to eat normally, their physical activity is controlled and they are provided with external heat. The method has been proven effective in a randomized controlled trial
An Embodied question answering system for use in the treatment of eating disorders
This paper presents work in progress on implementing an embodied question answering system, Dr. Cecilia, in the form of a virtual caregiver, for use in the treatment of eating disorders. The rationale for the system is grounded in one of the few effective treatments for anorexia and bulimia nervosa. The questions and answers database is encoded using natural language, and is easily updatable by human caregivers without any technical expertise. Matching of users' questions with database entries is performed using a weighted and normalized n-gram similarity function. In this paper we give a comprehensive background to and an overview of the system, with a focus on aspects pertaining to natural language processing and user interaction. The system is currently only implemented for Swedish
Control of Body Weight by Eating Behavior in Children
Diet, exercise, and pharmacological interventions have limited effects in counteracting the worldwide increase in pediatric body weight. Moreover, the promise that individualized drug design will work to induce weight loss appears to be exaggerated. We suggest that the reason for this limited success is that the cause of obesity has been misunderstood. Body weight is mainly under external control; our brain permits us to eat under most circumstances, and unless the financial or physical cost of food is high, eating and body weight increase by default. When energy-rich, inexpensive foods are continually available, people need external support to maintain a healthy body weight. Weight loss can thereby be achieved by continuous feedback on how much and how fast to eat on a computer screen
Children eat their school lunch too quickly: an exploratory study of the effect on food intake
<p>Abstract</p> <p>Background</p> <p>Speed of eating, an important aspect of eating behaviour, has recently been related to loss of control of food intake and obesity. Very little time is allocated for lunch at school and thus children may consume food more quickly and food intake may therefore be affected. Study 1 measured the time spent eating lunch in a large group of students eating together for school meals. Study 2 measured the speed of eating and the amount of food eaten in individual school children during normal school lunches and then examined the effect of experimentally increasing or decreasing the speed of eating on total food intake.</p> <p>Methods</p> <p>The time spent eating lunch was measured with a stop watch in 100 children in secondary school. A more detailed study of eating behaviour was then undertaken in 30 secondary school children (18 girls). The amount of food eaten at lunch was recorded by a hidden scale when the children ate amongst their peers and by a scale connected to a computer when they ate individually. When eating individually, feedback on how quickly to eat was visible on the computer screen. The speed of eating could therefore be increased or decreased experimentally using this visual feedback and the total amount of food eaten measured.</p> <p>Results</p> <p>In general, the children spent very little time eating their lunch. The 100 children in Study 1 spent on average (SD) just 7 (0.8) minutes eating lunch. The girls in Study 2 consumed their lunch in 5.6 (1.2) minutes and the boys ate theirs in only 6.8 (1.3) minutes. Eating with peers markedly distorted the amount of food eaten for lunch; only two girls and one boy maintained their food intake at the level observed when the children ate individually without external influences (258 (38) g in girls and 289 (73) g in boys). Nine girls ate on average 33% less food and seven girls ate 23% more food whilst the remaining boys ate 26% more food. The average speed of eating during school lunches amongst groups increased to 183 (53)% in the girls and to 166 (47)% in the boys compared to the speed of eating in the unrestricted condition. These apparent changes in food intake during school lunches could be replicated by experimentally increasing the speed of eating when the children were eating individually.</p> <p>Conclusions</p> <p>If insufficient time is allocated for consuming school lunches, compensatory increased speed of eating puts children at risk of losing control over food intake and in many cases over-eating. Public health initiatives to increase the time available for school meals might prove a relatively easy way to reduce excess food intake at school and enable children to eat more healthily.</p