36 research outputs found

    Evaluating display color capability

    Get PDF
    Although the CIE recommends using the 3D CIELAB color space to assess displays, a 3D CIELAB gamut plot can be difficult to calculate, render, and interpret. Here, a team of experts demonstrates why the gamut rings plot may be a better alternative

    Luminescence Properties of Thin Film Ta2 Zn3 O8 and Mn Doped Ta2 Zn3 O8

    Get PDF
    Blue luminescence from TaZZn30g and green luminescence from Mn doped TaZZn30g has been observed under low voltage cathodoluminescent excitation, In this article , the luminescence mechanisms of TaZZn30g and Mn doped TaZZn30 g are discussed in detail. The results suggest that the intrinsic blue luminescence of TaZZn30g results from a metal-to-ligand transition, whereas the green luminescence of Mn doped TaZZn30g results from the Mn 4T 1-6A I transition. The suppression of the blue intrinsic luminescence in Mn doped TaZZn30g suggests that efficient energy transfer from the host material to the Mn occurs. This energy transfer phenomenon is also discussed by comparing the photoluminescence excitation spectra of both thin film materials. Finally, the relative efficiency versus voltage and current density is demonstrated and discussed pertaining to field emission device operation

    Small-signal model of the two-phase interleaved coupled-inductor boost converter

    Get PDF
    A coupled-inductor dc-dc converter has several modes of operation in continuous-conduction mode (CCM) and discontinuous-conduction mode (DCM), and is quite complex. This paper presents the derivation of the complete small-signal model of a two-phase interleaved dc-dc boost converter utilizing a single-core coupled-inductor operating in both CCM and DCM. Several small-signal models are required to fully model the converter due to the complexity of the converter operating in DCM. The transfer functions are then derived from these small-signal models. The theoretical analysis is validated experimentally using frequency sweeps from a 1-kW prototype

    Terminology for chain polymerization (IUPAC Recommendations 2021)

    Get PDF
    Chain polymerizations are defined as chain reactions where the propagation steps occur by reaction between monomer(s) and active site(s) on the polymer chains with regeneration of the active site(s) at each step. Many forms of chain polymerization can be distinguished according to the mechanism of the propagation step (e.g., cyclopolymerization – when rings are formed, condensative chain polymerization – when propagation is a condensation reaction, group-transfer polymerization, polyinsertion, ring-opening polymerization – when rings are opened), whether they involve a termination step or not (e.g., living polymerization – when termination is absent, reversible-deactivation polymerization), whether a transfer step is involved (e.g., degenerative-transfer polymerization), and the type of chain carrier or active site (e.g., radical, ion, electrophile, nucleophile, coordination complex). The objective of this document is to provide a language for describing chain polymerizations that is both readily understandable and self-consistent, and which covers recent developments in this rapidly evolving field

    Terminology for chain polymerization (IUPAC Recommendations 2021)

    Get PDF
    Chain polymerizations are defined as chain reactions where the propagation steps occur by reaction between monomer(s) and active site(s) on the polymer chains with regeneration of the active site(s) at each step. Many forms of chain polymerization can be distinguished according to the mechanism of the propagation step (e.g., cyclopolymerization – when rings are formed, condensative chain polymerization – when propagation is a condensation reaction, group-transfer polymerization, polyinsertion, ring-opening polymerization – when rings are opened), whether they involve a termination step or not (e.g., living polymerization – when termination is absent, reversible-deactivation polymerization), whether a transfer step is involved (e.g., degenerative-transfer polymerization), and the type of chain carrier or active site (e.g., radical, ion, electrophile, nucleophile, coordination complex). The objective of this document is to provide a language for describing chain polymerizations that is both readily understandable and self-consistent, and which covers recent developments in this rapidly evolving field

    Terminology for chain polymerization (IUPAC Recommendations 2021)

    Get PDF
    Chain polymerizations are defined as chain reactions where the propagation steps occur by reaction between monomer(s) and active site(s) on the polymer chains with regeneration of the active site(s) at each step. Many forms of chain polymerization can be distinguished according to the mechanism of the propagation step (e.g., cyclopolymerization – when rings are formed, condensative chain polymerization – when propagation is a condensation reaction, group-transfer polymerization, polyinsertion, ring-opening polymerization – when rings are opened), whether they involve a termination step or not (e.g., living polymerization – when termination is absent, reversible-deactivation polymerization), whether a transfer step is involved (e.g., degenerative-transfer polymerization), and the type of chain carrier or active site (e.g., radical, ion, electrophile, nucleophile, coordination complex). The objective of this document is to provide a language for describing chain polymerizations that is both readily understandable and self-consistent, and which covers recent developments in this rapidly evolving field

    24.1: Character Contrast under Uniform Ambient Conditions

    No full text
    corecore