32 research outputs found

    High- to low-latitude teleconnections during glacial terminations associated with ENSO-like variability

    Get PDF
    Long-term changes in ENSO-like dynamics during deglaciations are linked to southern high-latitude regions through atmospheric and oceanic teleconnection mechanisms

    Nitrogen isotopic evidence for deglacial changes in nutrient supply in the eastern equatorial Pacific

    Get PDF
    The Eastern Equatorial Pacific (EEP) is a high nutrientñ "low chlorophyll region of the ocean. Downcore nitrogen isotope records from the EEP have been previously interpreted as a direct reflection of changes in nutrient consumption. However, the observed changes in sedimentary ή15N since the last glacial maximum have no coherent relationship with export productivity or an inferred variation in the iron-to-nitrate ratio of the surface waters. Rather, downcore N isotope records in the EEP strongly resemble changes in the extent of water column denitrification as recorded in nearby sedimentary ή15N records along the western margin of the Americas. This similarity is attributed to the overprinting of the N isotopic composition of nitrate in the EEP through the advection of nitrate westward from the margins in the subsurface. A local nitrogen isotope record of changes in the degree of nutrient consumption is extracted from the bulk sedimentary record by subtracting two different sedimentary ή15N records of denitrification changes from two new EEP ή15N records (TR163-22 and ODP Site 1240). The denitrification records used are from 1) the Central American margin (ODP Site 1242) and 2) the South American margin (GeoB7139-2). The degree of consumption in the surface waters declines rapidly from elevated values during the last glacial maximum to a pair of minima around 15 and 11ñ "13 ka, and finally it increases into the Holocene. The derived EEP nitrogen isotope record indicates that the regional peak in export productivity occurred when the supply of nutrients exceeded the apparently high demand. The influx of nutrients during the deglaciation is attributed to the resumption of intense overturning in the Southern Ocean and the release of sequestered CO2 and nutrient-rich, O2 poor waters from the deep ocean. This has important implications for understanding the glacial-interglacial scale variation in intermediate water suboxia and water column denitrification

    Identification and removal of Mn-Mg-rich contaminant phases in foraminiferal tests: Implications for Mg/Ca past temperature reconstructions

    Get PDF
    The geochemical composition of foraminifera shells from an Ocean Drilling Program site in the Panama Basin has been analyzed by several analytical techniques (LA-ICP-MS, ICP-MS, XRD, SEM, EDX) in order to identify and evaluate the occurrence of contaminant phases which may bias paleoenvironmental reconstructions. LA-ICP-MS results on uncleaned tests indicate the presence of Mn-Mg-rich contaminant phases at the inner surfaces of the foraminiferal shells (which have Mn/Ca ratios up to 400 mmol mol-1 and Mg/Ca ratios up to 50 mmol mol-1). We have rigorously assessed the ability of different cleaning protocols to remove these contaminant phases and have obtained satisfactory results only when a reductive step is included. The analysis of cleaning residuals collected after each of the different cleaning steps applied reveals that high Mn values are associated with at least two different contaminant phases, of which only one is linked to high Mg values. XRD analysis further reveals that the Mn-Mg-rich phase is the Ca-Mn-Mg carbonate kutnahorite (Ca(Mn, Mg)(CO3)2). Our results demonstrate that the presence of kutnahorite-like minerals can bias Mg/Ca ratios toward higher values (by 7-36%) and lead to significant overestimation of past seawater temperatures (by 0.9 up to 6.2°C, in the case of these Panama Basin samples)

    Holocene hydrography evolution in the Alboran Sea: a multi-record and multiproxy comparison

    Get PDF
    A new high-resolution deglacial and Holocene sea surface temperature (SST) reconstruction is presented for the Alboran Sea (western Mediterranean), based on Mg=Ca ratios measured in the planktonic foraminifera Globigerina bulloides. This new record is evaluated by comparison with other Mg=Ca SST records and previously published alkenone SST reconstructions from the same region for both the Holocene and glacial periods. In all cases there is a high degree of coherence between the different Mg=Ca SST records but strong discrepancies when compared to the alkenone SST records. We argue that these discrepancies are due to differences in the proxy response during deglaciation which we hypothesize to reflect a resilience strategy of G. bulloides, changing its main growth season, and consequently Mg=Ca records a shorter deglacial warming than alkenones. In contrast, short-term Holocene SST variability is larger in the Mg=Ca SST than in the alkenone SST records. We propose that the larger Mg=Ca SST variability is a result of spring temperatures variability, while the smoothed alkenone SST variability represents averaged annual temperatures. The Mg=Ca SST record differentiates the Holocene into three periods: (1) the warmest SST values occurred during the Early Holocene (11.7-9 cal. kyr BP), (2) a continuous cooling trend occurred during the Middle Holocene that culminated in the coldest Holocene SST having a double cold peak structure centred at around 4.2 cal. kyr BP, and (3) the Late Holocene (4.2 cal. kyr BP to present) did not follow any clear cooling/warming trend although millennial-scale oscillations were enhanced. This SST evolution is discussed in the context of the changing properties in the Atlantic inflow water associated with North Atlantic circulation conditions and also with local hydrographical and atmospheric changes. We propose that a tight link between North Atlantic circulation patterns and the inflow of surface waters into the Mediterranean played a major role in controlling Holocene climatic variability of this region

    A User‐Friendly Workbook to Facilitate Rapid and Accurate Rare Earth Element Analyses by ICP‐MS for Multispiked Samples

    Get PDF
    The rare earth elements (REEs) are widely used as geochemical tracers in the earth, planetary, and ocean sciences. Inductively coupled plasma‐mass spectrometry (ICP‐MS) has become the method of choice to analyze REE concentrations because it can rapidly measure the entire REE spectrum at the same time. This Technical Report presents a user‐friendly "REE Calculation Workbook" in Microsoft Excel to be used for calculating REE abundances in samples equilibrated with a multielement REE spike. This Workbook can be conveniently used to calculate REE concentrations in natural samples for spiked and unspiked elements measured by ICP‐MS. For the spiked elements, their concentrations are calculated using isotope dilution equations. Using these spiked elements as references, concentrations of the four mono‐isotopic REE elements, and other REE elements that are treated as mono‐isotopic elements (in our case, La and Lu), can be calculated. The REE Workbook can be easily set up for use with different REE spikes. Evaluation of our analytical quality using a quadrupole ICP‐MS on 10‐ml‐sized seawater samples shows that our analyses are comparable to high‐precision thermal ionization mass spectrometry (TIMS) studies, with much less time spent processing and analyzing, and with the added advantages of determining mono‐isotopic elements. An important result is the clear demonstration of enrichments in Gd and Er compared to neighboring elements in seawater samples. In addition, we compare and evaluate commonly used reference standards BCR‐1, Post‐Archean Australian Shale (PAAS), and North American Shale Composite (NASC)

    High resolution paleo-environmental changes during the Sapropel 1 in the North Ionian Sea, central Mediterranean

    Get PDF
    High-resolution paleoceanographic reconstruction of surface water properties during the most recent Sapropel event (S1) has been carried out by means of quantitative analyses of planktonic foraminiferal assemblages, planktonic foraminiferal oxygen isotopes (ή18O) and XRF elemental data from a 655 m depth core recovered in the North Ionian Sea. The results show that the S1 interval presents two distinctive warm phases (S1a and S1b), separated by a cold interruption event (S1i). High resolution faunal and geochemical analyses allow to identify two sub-phases within S1a interval, the oldest one has similar characteristics to S1b interval while the youngest sub-phase has less stratified surface waters with relatively lower nutrient content. The high abundance of Globigerinoides ruber white variety opposite to the low percentages of Neogloboquadrina pachyderma during the pre-S1 phase suggests that the onset of surface waters stratification occurred prior to the beginning of Sapropel deposition, acting as a pre-conditioning phase. Paleo-productivity proxies indicate that the deposition of S1 initiated after an increase in nutrient content, potentially related to increased fluvial inputs. Based on the integrated ecological interpretation of our records we argue that S1a and S1b are characterized as warm, stratified and nutrient rich surface waters in the Ionian Sea, while proxies related to oxygen content indicate dysoxic deep waters linked to a combination of the high nutrient content and stratified water column. The S1 interruption phase is characterized by the entrance of colder waters that caused mixing of the stratified water column and re-ventilation of the deep dysoxic waters

    Rare earth elements and Nd isotopes as tracers of modern ocean circulation in the central Mediterranean Sea

    Get PDF
    Seawater rare earth element (REE) concentrations and Nd isotopic composition (ΔNd) are increasingly applied as valuable tracers of oceanographic processes such as water mass mixing and lithogenic inputs to seawater. However, their measurements are basically lacking in the Mediterranean Sea water column. This study analyzes 9 seawater stations around the central Mediterranean Sea to clarify the relative importance of external sources, vertical (biogeochemical) processes and lateral water mass transport in controlling REE and ΔNd distributions. Concentrations of REE do not show nutrient-like profiles with depth, likely indicative of relatively young waters with limited accumulation of remineralized REE. Light REE (LREE) present a non-conservative behavior, which largely peak at surface waters and rapidly decrease with depth. The negative correlation of surface LREE enrichment with offshore distance highlights the influence of continental input from the western Italian coast to the Tyrrhenian surface waters. In contrast to other regions with reported boundary exchange, this process does not modify the ΔNd values here. On the other side, distributions of dissolved heavy REE (HREE) and ΔNd display a conservative behavior that can be explained by mixing of western- (MAW and WMDW) and eastern- (LIW and EMDW) originated waters. We test this hypothesis with an Optimum Multi-Parameter Analysis (OMPA) including HREE and ΔNd parameters. Even though the limited data set, consistent results of water mass fractions are obtained for the four main water masses although with some particularities. While LIW takes on major importance when considering HREE in the model, EMDW fractions are preferentially detected with ΔNd. This latter finding implies a noticeable deep water flux across the Sicily Strait into the Western Mediterranean that was not clearly evidenced before

    Holocene humidity changes in southern Iberia inferred from the geochemical signature of marine sediments

    Full text link
    The Mediterranean region is particularly sensitive to global climate variability that critically reflects on its hydrological conditions. A recently published high resolution reconstruction of Holocene Sea Surface Temperature (SST) based on Globigerina bulloides Mg/Ca ratios, set the basis to explore, within a warm climatic period, the impact of North Atlantic oceanographic conditions shaping the properties of the inflowing waters into the Mediterranean Sea. Here we go a step further in establishing the potential links between these oceanographical changes with the hydrological conditions on the southern Iberian Peninsula.This study combines XRF-core-scanner analyses with the radiogenic isotopes characterization (Sr, Nd and Pb) of the terrigenous fraction in core ALB-2 from the Alboran Sea. Results indicate that the most humid conditions developed during the early to middle Holocene with a transition towards drier conditions and colder SST that occurred by the late Holocene. The radiogenic Sr, Nd and Pb records do not show any covariance with the millennial scale oscillations shown in the Zr and K XRF records interpreted as humidity changes. This could suggest that inputs of African dust are not the main controlling factor in the XRF records. In contrast, the Sr isotope record shows a significant transition around the middle Holocene while SSTs show a cooling trend. For an accurate interpretation of that feature, this study also targets a novel approach by characterizing the radiogenic isotope composition of settling particles recovered by moored sediment traps under well characterized meteorological conditions

    Atmosphere-ocean linkages in the eastern equatorial Pacific over the early Pleistocene

    Get PDF
    Here we present a new set of high-resolution early Pleistocene records from the eastern equatorial Pacific (EEP). Sediment composition from Ocean Drilling Program Sites 1240 and 1238 is used to reconstruct past changes in the atmosphere-ocean system. Particularly remarkable is the presence of laminated diatom oozes (LDOs) during glacial periods between 1.85 and 2.25Ma coinciding with high fluxes of opal and total organic carbon. Relatively low lithic particles (coarse and poorly sorted) and iron fluxes during these glacial periods indicate that the increased diatom productivity did not result from dust-stimulated fertilization events. We argue that glacial fertilization occurred through the advection of nutrient-rich waters from the Southern Ocean. In contrast, glacial periods after 1.85Ma are characterized by enhanced dust transport of finer lithic particles acting as a new source of nutrients in the EEP. The benthic ecosystem shows dissimilar responses to the high productivity recorded during glacial periods before and after 1.85Ma, which suggests that the transport processes delivering organic matter to the deep sea also changed. Different depositional processes are interpreted to be the result of two distinct glacial positions of the Intertropical Convergence Zone (ITCZ). Before 1.85Ma, the ITCZ was above the equator, with weak local winds and enhanced wet deposition of dust. After 1.85Ma, the glacial ITCZ was displaced northward, thus bringing stronger winds and stimulating upwelling in the EEP. The glacial period at 1.65Ma with the most intense LDOs supports a rapid southward migration of the ITCZ comparable to those glacial periods before 1.85Ma

    Deglacial-Holocene Pulses of Old Carbon-Enriched Mediterranean Water Masses: Implications for Aragonite Mounds Growth and Global Carbon Cycle

    Full text link
    Major changes in the Mediterranean Thermohaline Circulation (MedTHC) related to deglaciation and monsoon dynamics have been documented, while in turn, Mediterranean waters have been proposed to play a role back in global climate variability, ocean circulation and carbon cycle budgets, for instance via changes in water mass residence times. The 14C offset between coeval planktonic and benthic foraminifera over time is a very useful tool to infer variations in the water column ventilation (with no biological interference) that becomes more accurate when combined with local paired 14C-U/Th analyses in cold-water corals (CWC). Here, we present a multi-proxy-archive study (i.e., estimates of reservoir ages, ΔNd, [CO3 2-], O2 and current speed) carried out on the on-mound sediment core MD13-3452 (305 m, West Melilla, Alboran Sea, Western Mediterranean), which investigates potential deglacial changes and triggers in deep reservoir ages, as well as possible impacts on CWC aragonite mound growth and on global carbon cycle.Our combined foraminifera-CWC radioactive isotopes results show: 1) the arrival of two pulses of aged waters at intermediate depth corresponding to the Younger Dryas (YD) and to the end of the last sapropel (S1), when low CWC mound growth rates dominated, and 2) a very well-ventilated water mass between those two events, parallel to a CWC mound flourishing stage. In combination with the other proxies, poorer ventilated water pulses seem to have had a different origin, but common higher content in respired carbon. Our results allow, for the first time, changes in ventilation rates to be shown, quantified, and timed in association with a periodical MedTHC weakening, as well as suggesting significant aragonite dissolution as a cause of decreased mound growth rate when higher CO2 episodes. Our findings may have implications for past hydrographic interconnexions between Mediterranean basins and for global marine carbon storage and alkalinity budget in particular
    corecore