86 research outputs found

    The p53-targeting human phosphatase hCdc14A interacts with the Cdk1/cyclin B complex and is differentially expressed in human cancers

    Get PDF
    BACKGROUND: The evolutionary conserved cyclin-dependent kinase phosphatase hCdc14A has been shown to play potential roles in the regulation of mitotic exit and in the centrosome duplication cycle. We have recently shown that hCdc14A also can interact with the tumor suppressor p53 both in vitro and in vivo and specifically dephosphorylates the ser315 site of p53 in vitro. In this study we developed antibodies against hCdc14A to investigate the expression and regulation of hCdc14A in human tissues and cancer cells. RESULTS: We show that hCdc14A is differentially expressed in human tissues and in 75 cancer cell lines examined. Treatments with the histone deacetylase inhibitor TSA, the demethylating agent 5-aza-2'-deoxycytodine or the proteasome inhibitor MG132 significantly induced expression of hCdc14A in cell lines expressing low or undetectable levels of hCdc14A. There was a strong bias for low expression of hCdc14A in cancer cell lines harboring wild-type p53, suggesting that high Cdc14A expression is not compatible with wild-type p53 expression. We present evidence for a role for hCdc14A in the dephosphorylation of the ser315 site of p53 in vivo and that hCdc14A forms a complex with Cdk1/cyclin B during interphase but not during mitosis. CONCLUSION: Our results that hCdc14A is differentially expressed in human cancer cells and that hCdc14A can interact with both p53 and the Cdk1/cyclin B complex may implicate that dysregulation of hCdc14A expression may play a role in carcinogenesis

    The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc.

    Get PDF
    Long non-coding RNAs (lncRNAs) represent an emerging layer of cancer biology, contributing to tumor proliferation, invasion, and metastasis. Here, we describe a role for the oncogenic lncRNA PCAT-1 in prostate cancer proliferation through cMyc. We find that PCAT-1-mediated proliferation is dependent on cMyc protein stabilization, and using expression profiling, we observed that cMyc is required for a subset of PCAT-1-induced expression changes. The PCAT-1-cMyc relationship is mediated through the post-transcriptional activity of the MYC 3\u27 untranslated region, and we characterize a role for PCAT-1 in the disruption of MYC-targeting microRNAs. To further elucidate a role for post-transcriptional regulation, we demonstrate that targeting PCAT-1 with miR-3667-3p, which does not target MYC, is able to reverse the stabilization of cMyc by PCAT-1. This work establishes a basis for the oncogenic role of PCAT-1 in cancer cell proliferation and is the first study to implicate lncRNAs in the regulation of cMyc in prostate cancer

    KDM6A Regulates Cell Plasticity and Pancreatic Cancer Progression by Non-Canonical Activin Pathway

    Get PDF
    BACKGROUND & AIMS: Inactivating mutations of KDM6A, a histone demethylase, were frequently found in pancreatic ductal adenocarcinoma (PDAC). We investigated the role of KDM6A in PDAC development. METHODS: We performed a pancreatic tissue microarray analysis of KDM6A protein levels. We used human PDAC cell lines for KDM6A knockout and knockdown experiments. We performed Bru-seq analysis to elucidate the effects of KDM6A loss on global transcription. We performed studies with Ptf1a(Cre); LSL-Kras(G12D); Trp53(R172H/+); Kdm6a(fl/fl or fl/Y), Ptf1a(Cre); Kdm6a(fl/fl or fl/Y), and orthotopic xenograft mice to investigate the impacts of Kdm6a deficiency on pancreatic tumorigenesis and pancreatitis. RESULTS: Loss of KDM6A was associated with metastasis in PDAC patients. Bru-seq analysis revealed upregulation of the epithelial-mesenchymal transition pathway in PDAC cells deficient of KDM6A. Loss of KDM6A promoted mesenchymal morphology, migration, and invasion in PDAC cells in vitro. Mechanistically, activin A and subsequent p38 activation likely mediated the role of KDM6A loss. Inhibiting either activin A or p38 reversed the effect. Pancreas-specific Kdm6a-knockout mice pancreata demonstrated accelerated PDAC progression, developed a more aggressive undifferentiated type PDAC, and increased metastases in the background of Kras and p53 mutations. Kdm6a-deficient pancreata in a pancreatitis model had a delayed recovery with increased PDAC precursor lesions compared to wild-type pancreata. CONCLUSIONS: Loss of KDM6A accelerates PDAC progression and metastasis, most likely by a non-canonical p38-dependant activin A pathway. KDM6A also promotes pancreatic tissue recovery from pancreatitis. Activin A might be utilized as a therapeutic target for KDM6A-deficient PDACs

    Abnormal RNA Stability in Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) share key features, including accumulation of the RNA-binding protein TDP-43. TDP-43 regulates RNA homeostasis, but it remains unclear whether RNA stability is affected in these disorders. We use Bru-seq and BruChase-seq to assess genome-wide RNA stability in ALS patient-derived cells, demonstrating profound destabilization of ribosomal and mitochondrial transcripts. This pattern is recapitulated by TDP-43 overexpression, suggesting a primary role for TDP-43 in RNA destabilization, and in postmortem samples from ALS and FTD patients. Proteomics and functional studies illustrate corresponding reductions in mitochondrial components and compensatory increases in protein synthesis. Collectively, these observations suggest that TDP-43 deposition leads to targeted RNA instability in ALS and FTD, and may ultimately cause cell death by disrupting energy production and protein synthesis pathways

    Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS

    Get PDF
    We hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O2 in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components. Mechanistically, the function of lincNORS requires the presence of RALY, an RNA-binding protein recently found to be implicated in cholesterol homeostasis. We also noticed the proximity between this locus and naturally occurring genetic variations highly significant for sterol/steroid-related phenotypes, in particular the age of sexual maturation. An integrative analysis of these variants provided a more formal link between these phenotypes and lincNORS, further strengthening the case for its biological relevance

    The Complete Spectrum of Yeast Chromosome Instability Genes Identifies Candidate CIN Cancer Genes and Functional Roles for ASTRA Complex Components

    Get PDF
    Chromosome instability (CIN) is observed in most solid tumors and is linked to somatic mutations in genome integrity maintenance genes. The spectrum of mutations that cause CIN is only partly known and it is not possible to predict a priori all pathways whose disruption might lead to CIN. To address this issue, we generated a catalogue of CIN genes and pathways by screening ∼2,000 reduction-of-function alleles for 90% of essential genes in Saccharomyces cerevisiae. Integrating this with published CIN phenotypes for other yeast genes generated a systematic CIN gene dataset comprised of 692 genes. Enriched gene ontology terms defined cellular CIN pathways that, together with sequence orthologs, created a list of human CIN candidate genes, which we cross-referenced to published somatic mutation databases revealing hundreds of mutated CIN candidate genes. Characterization of some poorly characterized CIN genes revealed short telomeres in mutants of the ASTRA/TTT components TTI1 and ASA1. High-throughput phenotypic profiling links ASA1 to TTT (Tel2-Tti1-Tti2) complex function and to TORC1 signaling via Tor1p stability, consistent with the role of TTT in PI3-kinase related kinase biogenesis. The comprehensive CIN gene list presented here in principle comprises all conserved eukaryotic genome integrity pathways. Deriving human CIN candidate genes from the list allows direct cross-referencing with tumor mutational data and thus candidate mutations potentially driving CIN in tumors. Overall, the CIN gene spectrum reveals new chromosome biology and will help us to understand CIN phenotypes in human disease

    Chronic Pain in a Couples Context: A Review and Integration of Theoretical Models and Empirical Evidence

    Get PDF
    Researchers have become increasingly interested in the social context of chronic pain conditions. The purpose of this article is to provide an integrated review of the evidence linking marital functioning with chronic pain outcomes including pain severity, physical disability, pain behaviors, and psychological distress. We first present an overview of existing models that identify an association between marital functioning and pain variables. We then review the empirical evidence for a relationship between pain variables and several marital functioning variables including marital satisfaction, spousal support, spouse responses to pain, and marital interaction. On the basis of the evidence, we present a working model of marital and pain variables, identify gaps in the literature, and offer recommendations for research and clinical work

    Glia-Pinealocyte Network: The Paracrine Modulation of Melatonin Synthesis by Tumor Necrosis Factor (TNF)

    Get PDF
    The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status

    Sexually Dimorphic Serotonergic Dysfunction in a Mouse Model of Huntington's Disease and Depression

    Get PDF
    Depression is the most common psychiatric disorder in Huntington's disease (HD) patients. In the general population, women are more prone to develop depression and such susceptibility might be related to serotonergic dysregulation. There is yet to be a study of sexual dimorphism in the development and presentation of depression in HD patients. We investigated whether 8-week-old male and female R6/1 transgenic HD mice display depressive-like endophenotypes associated with serotonergic impairments. We also studied the behavioral effects of acute treatment with sertraline. We found that only female HD mice exhibited a decreased preference for saccharin as well as impaired emotionality-related behaviors when assessed on the novelty-suppressed feeding test (NSFT) and the forced-swimming test (FST). The exaggerated immobility time displayed by female HD in the FST was reduced by acute administration of sertraline. We also report an increased response to the 5-HT1A receptor agonist 8-OH-DPAT in inducing hypothermia and a decreased 5-HT2A receptor function in HD animals. While tissue levels of serotonin were reduced in both male and female HD mice, we found that serotonin concentration and hydroxylase-2 (TPH2) mRNA levels were higher in the hippocampus of males compared to female animals. Finally, the antidepressant-like effects of sertraline in the FST were blunted in male HD animals. This study reveals sex-specific depressive-related behaviors during an early stage of HD prior to any cognitive and motor deficits. Our data suggest a crucial role for disrupted serotonin signaling in mediating the sexually dimorphic depression-like phenotype in HD mice
    corecore