110 research outputs found
Temperature-dependent anisotropy in MgB as inferred from measurements on polycrystals
We present data on temperature-dependent anisotropy of the upper critical
field of MgB obtained from the analysis of measurements on high purity, low
resistivity polycrystals. The anisotropy decreases in a monotonic fashion with
increase of temperature
Kaon Zero-Point Fluctuations in Neutron Star Matter
We investigate the contribution of zero-point motion, arising from
fluctuations in kaon modes, to the ground state properties of neutron star
matter containing a Bose condensate of kaons. The zero-point energy is derived
via the thermodynamic partition function, by integrating out fluctuations for
an arbitrary value of the condensate field. It is shown that the vacuum
counterterms of the chiral Lagrangian ensure the cancellation of divergences
dependent on , the charge chemical potential, which may be regarded as an
external vector potential. The total grand potential, consisting of the
tree-level potential, the zero-point contribution, and the counterterm
potential, is extremized to yield a locally charge neutral, beta-equilibrated
and minimum energy ground state. In some regions of parameter space we
encounter the well-known problem of a complex effective potential. Where the
potential is real and solutions can be obtained, the contributions from
fluctuations are found to be small in comparison with tree-level contributions.Comment: 40 pages RevTeX, 3 epsf figure
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
A-dependence of phi-meson production in p+A collisions
A systematic analysis of the A-dependence of phi-meson production in
proton-nucleus collisions is presented. We apply different formalisms for the
evaluation of the phi-meson distortion in nuclei and discuss the theoretical
uncertainties of the data analysis. The corresponding results are compared to
theoretical predictions. We also discuss the interpretation of the extracted
results with respect to different observables and provide relations between
frequently used definitions. The perspectives of future experiments are
evaluated and estimates based on our systematical study are given.Comment: 14 pages, 8 figure
CT colonography with limited bowel preparation for the detection of colorectal neoplasia in an FOBT positive screening population
Item does not contain fulltextPURPOSE: Aim was to evaluate the accuracy of computed tomography colonography (CTC) for detection of colorectal neoplasia in a Fecal Occult Blood Test (FOBT) positive screening population. METHODS: In three different institutions, consecutive FOBT positives underwent CTC after laxative free iodine tagging bowel preparation followed by colonoscopy with segmental unblinding. Each CTC was read by two experienced observers. For CTC and for colonoscopy the per-polyp sensitivity and per-patient sensitivity and specificity were calculated for detection of carcinomas, advanced adenomas, and adenomas. RESULTS: In total 22 of 302 included FOBT positive participants had a carcinoma (7%) and 137 had an adenoma or carcinoma >/=10 mm (45%). CTC sensitivity for carcinoma was 95% with one rectal carcinoma as false negative finding. CTC sensitivity for advanced adenomas was 92% (95% CI: 88-96) vs. 96% (95% CI: 93-99) for colonoscopy (P = 0.26). For adenomas and carcinomas >/=10 mm the CTC per-polyp sensitivity was 93% (95% CI: 89-97) vs. 97% (95% CI: 94-99) for colonoscopy (P = 0.17). The per-patient sensitivity for the detection of adenomas and carcinomas >/=10 mm was 95% (95% CI: 91-99) for CTC vs. 99% (95% CI: 98-100) for colonoscopy (P = 0.07), while the per-patient specificity was 90% (95% CI: 86-95) and 96% (95% CI: 94-99), respectively (P < 0.001). CONCLUSION: CTC with limited bowel preparation performed in an FOBT positive screening population has high diagnostic accuracy for the detection of adenomas and carcinomas and a sensitivity similar to that of colonoscopy for relevant lesions.1 december 201
RNA-Binding Protein Musashi1 Modulates Glioma Cell Growth through the Post-Transcriptional Regulation of Notch and PI3 Kinase/Akt Signaling Pathways
Musashi1 (MSI1) is an RNA-binding protein that plays critical roles in nervous-system development and stem-cell self-renewal. Here, we examined its role in the progression of glioma. Short hairpin RNA (shRNA)-based MSI1-knock down (KD) in glioblastoma and medulloblastoma cells resulted in a significantly lower number of self renewing colony on day 30 (a 65% reduction), compared with non-silencing shRNA-treated control cells, indicative of an inhibitory effect of MSI1-KD on tumor cell growth and survival. Immunocytochemical staining of the MSI1-KD glioblastoma cells indicated that they ectopically expressed metaphase markers. In addition, a 2.2-fold increase in the number of MSI1-KD cells in the G2/M phase was observed. Thus, MSI1-KD caused the prolongation of mitosis and reduced the cell survival, although the expression of activated Caspase-3 was unaltered. We further showed that MSI1-KD glioblastoma cells xenografted into the brains of NOD/SCID mice formed tumors that were 96.6% smaller, as measured by a bioluminescence imaging system (BLI), than non-KD cells, and the host survival was longer (49.3±6.1 days vs. 33.6±3.6 days; P<0.01). These findings and other cell biological analyses suggested that the reduction of MSI1 in glioma cells prolonged the cell cycle by inducing the accumulation of Cyclin B1. Furthermore, MSI1-KD reduced the activities of the Notch and PI3 kinase-Akt signaling pathways, through the up-regulation of Numb and PTEN, respectively. Exposure of glioma cells to chemical inhibitors of these pathways reduced the number of spheres and living cells, as did MSI1-KD. These results suggest that MSI1 increases the growth and/or survival of certain types of glioma cells by promoting the activation of both Notch and PI3 kinase/Akt signaling
- …