186 research outputs found
Haplotype block partitioning as a tool for dimensionality reduction in SNP association studies
<p>Abstract</p> <p>Background</p> <p>Identification of disease-related genes in association studies is challenged by the large number of SNPs typed. To address the dilution of power caused by high dimensionality, and to generate results that are biologically interpretable, it is critical to take into consideration spatial correlation of SNPs along the genome. With the goal of identifying true genetic associations, partitioning the genome according to spatial correlation can be a powerful and meaningful way to address this dimensionality problem.</p> <p>Results</p> <p>We developed and validated an MCMC Algorithm To Identify blocks of Linkage DisEquilibrium (MATILDE) for clustering contiguous SNPs, and a statistical testing framework to detect association using partitions as units of analysis. We compared its ability to detect true SNP associations to that of the most commonly used algorithm for block partitioning, as implemented in the Haploview and HapBlock software. Simulations were based on artificially assigning phenotypes to individuals with SNPs corresponding to region 14q11 of the HapMap database. When block partitioning is performed using MATILDE, the ability to correctly identify a disease SNP is higher, especially for small effects, than it is with the alternatives considered.</p> <p>Advantages can be both in terms of true positive findings and limiting the number of false discoveries. Finer partitions provided by LD-based methods or by marker-by-marker analysis are efficient only for detecting big effects, or in presence of large sample sizes. The probabilistic approach we propose offers several additional advantages, including: a) adapting the estimation of blocks to the population, technology, and sample size of the study; b) probabilistic assessment of uncertainty about block boundaries and about whether any two SNPs are in the same block; c) user selection of the probability threshold for assigning SNPs to the same block.</p> <p>Conclusion</p> <p>We demonstrate that, in realistic scenarios, our adaptive, study-specific block partitioning approach is as or more efficient than currently available LD-based approaches in guiding the search for disease loci.</p
Viral hepatitis, HIV, human herpes virus and Treponema pallidum infection in haemodialysis patients from Kosovo, 2005.
Binary file ES_Abstracts_Final_ECDC.txt matche
A bidirectional Mendelian randomization study supports causal effects of kidney function on blood pressure
Blood pressure and kidney function have a bidirectional relation. Hypertension has long been considered as a risk factor for kidney function decline. However, whether intensive blood pressure control could promote kidney health has been uncertain. The kidney is known to have a major role in affecting blood pressure through sodium extraction and regulating electrolyte balance. This bidirectional relation makes causal inference between these two traits difficult. Therefore, to examine the causal relations between these two traits, we performed two-sample Mendelian randomization analyses using summary statistics of large-scale genome-wide association studies. We selected genetic instruments more likely to be specific for kidney function using meta-analyses of complementary kidney function biomarkers (glomerular filtration rate estimated from serum creatinine [eGFRcr], and blood urea nitrogen from the CKDGen Consortium). Systolic and diastolic blood pressure summary statistics were from the International Consortium for Blood Pressure and UK Biobank. Significant evidence supported the causal effects of higher kidney function on lower blood pressure. Based on the mode-based Mendelian randomization method, the effect estimates for one standard deviation (SD) higher in log-transformed eGFRcr was -0.17 SD unit (95 % confidence interval: -0.09 to -0.24) in systolic blood pressure and -0.15 SD unit (95% confidence interval: -0.07 to -0.22) in diastolic blood pressure. In contrast, the causal effects of blood pressure on kidney function were not statistically significant. Thus, our results support causal effects of higher kidney function on lower blood pressure and suggest preventing kidney function decline can reduce the public health burden of hypertension
Genetic determinants of complement activation in the general population
Complement is a fundamental innate immune response component. Its alterations are associated with severe systemic diseases. To illuminate the complement's genetic underpinnings, we conduct genome-wide association studies of the functional activity of the classical (CP), lectin (LP), and alternative (AP) complement pathways in the Cooperative Health Research in South Tyrol study (n = 4,990). We identify seven loci, encompassing 13 independent, pathway-specific variants located in or near complement genes (CFHR4, C7, C2, MBL2) and non-complement genes (PDE3A, TNXB, ABO), explaining up to 74% of complement pathways' genetic heritability and implicating long-range haplotypes associated with LP at MBL2. Two-sample Mendelian randomization analyses, supported by transcriptome- and proteome-wide colocalization, confirm known causal pathways, establish within-complement feedback loops, and implicate causality of ABO on LP and of CFHR2 and C7 on AP. LP causally influences collectin-11 and KAAG1 levels and the risk of mouth ulcers. These results build a comprehensive resource to investigate the role of complement in human health
A genome-wide association scan of RR and QT interval duration in 3 European genetically isolated populations:the EUROSPAN project
We set out to identify common genetic determinants of the length of the RR and QT intervals in 2325 individuals from isolated European populations.We analyzed the heart rate at rest, measured as the RR interval, and the length of the corrected QT interval for association with 318 237 single-nucleotide polymorphisms. The RR interval was associated with common variants within GPR133, a G-protein-coupled receptor (rs885389, P=3.9 x 10(-8)). The QT interval was associated with the earlier reported NOS1AP gene (rs2880058, P=2.00 x 10(-10)) and with a region on chromosome 13 (rs2478333, P=4.34 x 10(-8)), which is 100 kb from the closest known transcript LOC730174 and has previously not been associated with the length of the QT interval.Our results suggested an association between the RR interval and GPR133 and confirmed an association between the QT interval and NOS1AP
Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations
Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases
Importance of Different Types of Prior Knowledge in Selecting Genome‐Wide Findings for Follow‐Up
Biological plausibility and other prior information could help select genome‐wide association ( GWA ) findings for further follow‐up, but there is no consensus on which types of knowledge should be considered or how to weight them. We used experts’ opinions and empirical evidence to estimate the relative importance of 15 types of information at the single‐nucleotide polymorphism ( SNP ) and gene levels. Opinions were elicited from 10 experts using a two‐round Delphi survey. Empirical evidence was obtained by comparing the frequency of each type of characteristic in SNP s established as being associated with seven disease traits through GWA meta‐analysis and independent replication, with the corresponding frequency in a randomly selected set of SNP s. SNP and gene characteristics were retrieved using a specially developed bioinformatics tool. Both the expert and the empirical evidence rated previous association in a meta‐analysis or more than one study as conferring the highest relative probability of true association, whereas previous association in a single study ranked much lower. High relative probabilities were also observed for location in a functional protein domain, although location in a region evolutionarily conserved in vertebrates was ranked high by the data but not by the experts. Our empirical evidence did not support the importance attributed by the experts to whether the gene encodes a protein in a pathway or shows interactions relevant to the trait. Our findings provide insight into the selection and weighting of different types of knowledge in SNP or gene prioritization, and point to areas requiring further research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96262/1/gepi21705.pd
SNP Prioritization Using a B ayesian Probability of Association
Prioritization is the process whereby a set of possible candidate genes or SNP s is ranked so that the most promising can be taken forward into further studies. In a genome‐wide association study, prioritization is usually based on the P ‐values alone, but researchers sometimes take account of external annotation information about the SNP s such as whether the SNP lies close to a good candidate gene. Using external information in this way is inherently subjective and is often not formalized, making the analysis difficult to reproduce. Building on previous work that has identified 14 important types of external information, we present an approximate B ayesian analysis that produces an estimate of the probability of association. The calculation combines four sources of information: the genome‐wide data, SNP information derived from bioinformatics databases, empirical SNP weights, and the researchers’ subjective prior opinions. The calculation is fast enough that it can be applied to millions of SNPS and although it does rely on subjective judgments, those judgments are made explicit so that the final SNP selection can be reproduced. We show that the resulting probability of association is intuitively more appealing than the P ‐value because it is easier to interpret and it makes allowance for the power of the study. We illustrate the use of the probability of association for SNP prioritization by applying it to a meta‐analysis of kidney function genome‐wide association studies and demonstrate that SNP selection performs better using the probability of association compared with P ‐values alone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96317/1/gepi21704.pd
Cluster analysis of angiotensin biomarkers to identify antihypertensive drug treatment in population studies
Background:
The recent progress in molecular biology generates an increasing interest in investigating molecular biomarkers as markers of response to treatments. The present work is motivated by a study, where the objective was to explore the potential of the molecular biomarkers of renin-angiotensin-aldosterone system (RAAS) to identify the undertaken antihypertensive treatments in the general population. Population-based studies offer an opportunity to assess the effectiveness of treatments in real-world scenarios. However, lack of quality documentation, especially when electronic health record linkage is unavailable, leads to inaccurate reporting and classification bias.
Method:
We present a machine learning clustering technique to determine the potential of measured RAAS biomarkers for the identification of undertaken treatments in the general population. The biomarkers were simultaneously determined through a novel mass-spectrometry analysis in 800 participants of the Cooperative Health Research In South Tyrol (CHRIS) study with documented antihypertensive treatments. We assessed the agreement, sensitivity and specificity of the resulting clusters against known treatment types. Through the lasso penalized regression, we identified clinical characteristics associated with the biomarkers, accounting for the effects of cluster and treatment classifications.
Results:
We identified three well-separated clusters: cluster 1 (n = 444) preferentially including individuals not receiving RAAS-targeting drugs; cluster 2 (n = 235) identifying angiotensin type 1 receptor blockers (ARB) users (weighted kappa κw = 74%; sensitivity = 73%; specificity = 83%); and cluster 3 (n = 121) well discriminating angiotensin-converting enzyme inhibitors (ACEi) users (κw = 81%; sensitivity = 55%; specificity = 90%). Individuals in clusters 2 and 3 had higher frequency of diabetes as well as higher fasting glucose and BMI levels. Age, sex and kidney function were strong predictors of the RAAS biomarkers independently of the cluster structure.
Conclusions:
Unsupervised clustering of angiotensin-based biomarkers is a viable technique to identify individuals on specific antihypertensive treatments, pointing to a potential application of the biomarkers as useful clinical diagnostic tools even outside of a controlled clinical setting
- …