252 research outputs found

    Mirror, mirror on the wall, tell me, is the error small?

    Full text link
    Do object part localization methods produce bilaterally symmetric results on mirror images? Surprisingly not, even though state of the art methods augment the training set with mirrored images. In this paper we take a closer look into this issue. We first introduce the concept of mirrorability as the ability of a model to produce symmetric results in mirrored images and introduce a corresponding measure, namely the \textit{mirror error} that is defined as the difference between the detection result on an image and the mirror of the detection result on its mirror image. We evaluate the mirrorability of several state of the art algorithms in two of the most intensively studied problems, namely human pose estimation and face alignment. Our experiments lead to several interesting findings: 1) Surprisingly, most of state of the art methods struggle to preserve the mirror symmetry, despite the fact that they do have very similar overall performance on the original and mirror images; 2) the low mirrorability is not caused by training or testing sample bias - all algorithms are trained on both the original images and their mirrored versions; 3) the mirror error is strongly correlated to the localization/alignment error (with correlation coefficients around 0.7). Since the mirror error is calculated without knowledge of the ground truth, we show two interesting applications - in the first it is used to guide the selection of difficult samples and in the second to give feedback in a popular Cascaded Pose Regression method for face alignment.Comment: 8 pages, 9 figure

    Regression-based Multi-View Facial Expression Recognition

    Get PDF
    We present a regression-based scheme for multi-view facial expression recognition based on 2-D geometric features. We address the problem by mapping facial points (e.g. mouth corners) from non-frontal to frontal view where further recognition of the expressions can be performed using a state-of-the-art facial expression recognition method. To learn the mapping functions we investigate four regression models: Linear Regression (LR), Support Vector Regression (SVR), Relevance Vector Regression (RVR) and Gaussian Process Regression (GPR). Our extensive experiments on the CMU Multi-PIE facial expression database show that the proposed scheme outperforms view-specific classifiers by utilizing considerably less training data

    A dynamic texture based approach to recognition of facial actions and their temporal models

    Get PDF
    In this work, we propose a dynamic texture-based approach to the recognition of facial Action Units (AUs, atomic facial gestures) and their temporal models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-frontal-view face videos. Two approaches to modeling the dynamics and the appearance in the face region of an input video are compared: an extended version of Motion History Images and a novel method based on Nonrigid Registration using Free-Form Deformations (FFDs). The extracted motion representation is used to derive motion orientation histogram descriptors in both the spatial and temporal domain. Per AU, a combination of discriminative, frame-based GentleBoost ensemble learners and dynamic, generative Hidden Markov Models detects the presence of the AU in question and its temporal segments in an input image sequence. When tested for recognition of all 27 lower and upper face AUs, occurring alone or in combination in 264 sequences from the MMI facial expression database, the proposed method achieved an average event recognition accuracy of 89.2 percent for the MHI method and 94.3 percent for the FFD method. The generalization performance of the FFD method has been tested using the Cohn-Kanade database. Finally, we also explored the performance on spontaneous expressions in the Sensitive Artificial Listener data set

    Learning to detect video events from zero or very few video examples

    Get PDF
    In this work we deal with the problem of high-level event detection in video. Specifically, we study the challenging problems of i) learning to detect video events from solely a textual description of the event, without using any positive video examples, and ii) additionally exploiting very few positive training samples together with a small number of ``related'' videos. For learning only from an event's textual description, we first identify a general learning framework and then study the impact of different design choices for various stages of this framework. For additionally learning from example videos, when true positive training samples are scarce, we employ an extension of the Support Vector Machine that allows us to exploit ``related'' event videos by automatically introducing different weights for subsets of the videos in the overall training set. Experimental evaluations performed on the large-scale TRECVID MED 2014 video dataset provide insight on the effectiveness of the proposed methods.Comment: Image and Vision Computing Journal, Elsevier, 2015, accepted for publicatio

    Capsule Network based Contrastive Learning of Unsupervised Visual Representations

    Full text link
    Capsule Networks have shown tremendous advancement in the past decade, outperforming the traditional CNNs in various task due to it's equivariant properties. With the use of vector I/O which provides information of both magnitude and direction of an object or it's part, there lies an enormous possibility of using Capsule Networks in unsupervised learning environment for visual representation tasks such as multi class image classification. In this paper, we propose Contrastive Capsule (CoCa) Model which is a Siamese style Capsule Network using Contrastive loss with our novel architecture, training and testing algorithm. We evaluate the model on unsupervised image classification CIFAR-10 dataset and achieve a top-1 test accuracy of 70.50% and top-5 test accuracy of 98.10%. Due to our efficient architecture our model has 31 times less parameters and 71 times less FLOPs than the current SOTA in both supervised and unsupervised learning

    Motor Imagery Decoding Using Ensemble Curriculum Learning and Collaborative Training

    Full text link
    Objective: In this work, we study the problem of cross-subject motor imagery (MI) decoding from electroenchephalography (EEG) data. Multi-subject EEG datasets present several kinds of domain shifts due to various inter-individual differences (e.g. brain anatomy, personality and cognitive profile). These domain shifts render multi-subject training a challenging task and also impede robust cross-subject generalization. Method: We propose a two-stage model ensemble architecture, built with multiple feature extractors (first stage) and a shared classifier (second stage), which we train end-to-end with two loss terms. The first loss applies curriculum learning, forcing each feature extractor to specialize to a subset of the training subjects and promoting feature diversity. The second loss is an intra-ensemble distillation objective that allows collaborative exchange of knowledge between the models of the ensemble. Results: We compare our method against several state-of-the-art techniques, conducting subject-independent experiments on two large MI datasets, namely Physionet and OpenBMI. Our algorithm outperforms all of the methods in both 5-fold cross-validation and leave-one-subject-out evaluation settings, using a substantially lower number of trainable parameters. Conclusion: We demonstrate that our model ensembling approach combining the powers of curriculum learning and collaborative training, leads to high learning capacity and robust performance. Significance: Our work addresses the issue of domain shifts in multi-subject EEG datasets, paving the way for calibration-free BCI systems.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Code: https://github.com/gzoumpourlis/Ensemble-M

    MaskCon: Masked Contrastive Learning for Coarse-Labelled Dataset

    Get PDF
    Deep learning has achieved great success in recent years with the aid of advanced neural network structures and large-scale human-annotated datasets. However, it is often costly and difficult to accurately and efficiently annotate large-scale datasets, especially for some specialized domains where fine-grained labels are required. In this setting, coarse labels are much easier to acquire as they do not require expert knowledge. In this work, we propose a contrastive learning method, called masked contrastive learning (MaskCon) to address the under-explored problem setting, where we learn with a coarse-labelled dataset in order to address a finer labelling problem. More specifically, within the contrastive learning framework, for each sample our method generates soft-labels with the aid of coarse labels against other samples and another augmented view of the sample in question. By contrast to self-supervised contrastive learning where only the sample’s augmentations are considered hard positives, and in supervised contrastive learning where only samples with the same coarse labels are considered hard positives, we propose soft labels based on sample distances, that are masked by the coarse labels. This allows us to utilize both inter-sample relations and coarse labels. We demonstrate that our method can obtain as special cases many existing state-of-the-art works and that it provides tighter bounds on the generalization error. Experimentally, our method achieves significant improvement over the current state-of-the-art in various datasets, including CIFAR10, CIFAR100, ImageNet-1K, Standford Online Products and Stanford Cars196 datasets

    Prompting Visual-Language Models for Dynamic Facial Expression Recognition

    Get PDF
    This paper presents a novel visual-language model called DFER-CLIP, which is based on the CLIP model and designed for in-the-wild Dynamic Facial Expression Recognition (DFER). Specifically, the proposed DFER-CLIP consists of a visual part and a textual part. For the visual part, based on the CLIP image encoder, a temporal model consisting of several Transformer encoders is introduced for extracting temporal facial expression features, and the final feature embedding is obtained as a learnable "class" token. For the textual part, we use as inputs textual descriptions of the facial behaviour that is related to the classes (facial expressions) that we are interested in recognising -- those descriptions are generated using large language models, like ChatGPT. This, in contrast to works that use only the class names and more accurately captures the relationship between them. Alongside the textual description, we introduce a learnable token which helps the model learn relevant context information for each expression during training. Extensive experiments demonstrate the effectiveness of the proposed method and show that our DFER-CLIP also achieves state-of-the-art results compared with the current supervised DFER methods on the DFEW, FERV39k, and MAFW benchmarks
    corecore