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Abstract

In this work, we introduce linear and non-linear maximum margin framework for classi-

fication using Non-negative Matrix Factorization. By contrast to the traditional setting

in which the classification and the matrix factorization stages are separated we incorpo-

rate the maximum margin constraints within the NMF formulation. This results to a

non-convex constrained optimization problem with respect to the bases, and the sepa-

rating hyperplane, which we propose to solve in an iterative way, where at each iteration

we solve a set of convex (constrained quadratic or SVM-type) sub-problems with re-

spect to subsets of the unknown variables. By doing so, we obtain a bases matrix by

which we extract features that maximize the margin of the resulting classifier in the low

dimensional feature space. We also extend this framework to Kernel NMF where we

maximize the margin of the classifier in the reconstructed feature space. The perfor-

mance of the proposed algorithms are evaluated on several publicly available datasets

where it is shown to consistently outperform SVM classifiers that use features that are

extracted by Kernel NMF [28], semi-NMF [7] or Discriminative NMF [9].
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Chapter 1

Introduction

The Non-Negative Matrix Factorization (NMF) algorithm is one of the most popu-

lar Machine Learning techniques for data dimensionality reduction. NMF decomposes

the data matrix into non-subtractive combinations of non-negative bases [12]. Its abil-

ity to produce parts-based representations is theoretically justified and experimentally

demonstrated in [10]. By contrast, other dimensionality reduction methods, such as the

Principal Component Analysis (PCA) [23] result in bases and projection coefficients that

can take either positive or negative values.

The first formulations for NMF were proposed in Lee et al. [10] and Paatero et al. [17].

In both approaches, the bases and coefficient matrices are obtained by minimizing the

reconstruction error, that is the discrepancy between the approximation obtained by the

matrix factorization algorithm and the original data. The reconstruction error is quan-

tified either using the Kullback-Leibler divergence [10] or the least squares error [18]

. In an efficient implementation, Lee et al. [11] defined a set of multiplicative update

rules that are derived from the optimization of an auxiliary function that bounds the

cost function from above. Lin et al. [14] showed that the minimization of the auxiliary

function indeed reduces the cost function but does not warranty the convergence of the

algorithm to the stationary point of the original optimization problem. Two projected

gradient-based methods for NMF that exhibited strong optimization properties were

proposed in [13]. Motivated by the fact that the multiplicative update rules for comput-

ing the factor matrices converge slowly and aiming at reducing expensive NMF update

steps, a few matrix initialization techniques were proposed in [3] that ensure rapid error

reduction rate and faster convergence.

Although NMF usually results in a part-based representation, the various parts are

not always well localized. In order to obtain a better localized (sparse) representation,

3



Introduction 4

local constraints were imposed along with the non-negativity constraints [5,12]. Several

other algorithms [8, 16, 19] aim to achieve sparsity with tunable parameters. In [8, 16],

sparseness constraints were imposed on the elements of the coefficient matrix and a

parameter was used to control the trade-off between the sparseness and the accuracy of

the reconstruction. Such methods have an implicit control over the degree of sparseness.

By contrast, the approaches in [19] impose explicit sparseness constraints on both the

base and coefficient matrices, allowing in that way an explicit control on the degree of

sparseness.

The fact that NMF leads to a low rank approximation of the data makes it suitable

for subspace learning, that is for embedding high dimensional data in a low dimensional

subspace. In this context, it has been extensively used for facial analysis including

detection [5], recognition [12], verification [27] and expression recognition [9, 26]. Sev-

eral other applications of NMF in Computer Vision include pose estimation [1], action

recognition [25,21], object recognition [15], subspace learning [4] and clustering [7].

In [1], NMF bases and coefficients are learned using a set of features extracted from

clutter-free images containing objects. In [21], the NMF coefficients are extracted using

appearance features and motion vectors. These coefficients are subsequently used to

train a cascaded LDA-based classifier. The technique in [25] follows an approach similar

to [1] for detection of humans in image sequences, where NMF is employed to learn

a set of pose primitives. In [15], two approaches are followed in order to improve the

recognition rate using features extracted by NMF. The first approach uses a Riemannian

metric for the learned feature vectors instead of the classic Euclidean distance, while the

second one orthonormalizes the NMF bases and then uses the features projected onto

these bases. Cai et al. [4] proposed Graph Regularized NMF (GNMF) that models the

data subspace as a submanifold embedded in an ambient space. By learning NMF on

such a manifold, GNMF has more discriminative power when compared to NMF which

only considers the Euclidean space. Ding et al. [7] proposed Semi-NMF for clustering

in which the non-negativity constraints on the basis matrix are relaxed. This leads to

a basis matrix that contains cluster centers and non-negative coefficients that can be

interpreted as cluster indicators.

Only few works exist that use constraints that aim at increasing the discriminative

power of the extracted features. Zafeiriou et al. [27] introduced discriminative constraints

in order to extract bases that correspond to discriminative facial regions for the problem

of face recognition. Indeed, DNMF [27] results in bases corresponding to salient facial

features such as eyes, mouth etc, that are vital for discrimination. Kotsia et al. [9]
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proposed projected gradients DNMF (PGDNMF) for facial expression recognition which

differed from DNMF in two main ways. First, projected gradients were used instead of

multiplicative update rules as the former guarantee the convergence of the algorithm

to a limit point that is also a stationary point of the original optimization problem.

Second, the discriminant analysis is employed on the classification features and not on

the reconstructed data. In both of the above mentioned approaches the discriminant

constraints were introduced in the cost function to yield more discriminative bases.

However, the introduced constraints were taylored for a rather simplistic LDA-based

classifier. In the proposed framework, the choice of the projections acquired is performed

in such a way that it maximizes the discriminative ability of an SVM classifier, a fact that

results in higher classification performance as will be demonstrated in the section of the

experimental results. In chapter 2 we propose a max-margin framework for Semi-NMF

and we extend this framework for kernel NMF in chapter 3



Chapter 2

Max-Margin Linear Semi NMF
1

2.1 Introduction

In this paper we introduce soft max-margin constraints to the objective function of NMF

to obtain a bases matrix that maximizes the classification margin using the features that

are extracted using those bases. In the proposed scheme we optimize a weighted com-

bination of the reconstruction error term that is used in the typical NMF formulations

and the cost that is used in typical SVM formulations, under SVM-type linear inequal-

ity constraints. The optimization is with respect to the unknown bases, the projection

coefficients and the parameters of the separating hyperplane and is solved in an itera-

tive manner, where at each iteration we solve only for one of them while keeping the

others fixed. The resulting sub-optimization problems are either instances of Quadratic

programming with linear inequality constraints or classical SVM-type problems. The

proposed method is applied to publicly available databases (the INRIA pedestrian, the

KTH action and the mushroom1 datasets) where we demonstrate that it consistently

outperforms SVM classification schemes that use features that are extracted using Semi-

NMF [7], or DNMF [27].

Summarizing, the main contributions of this part are

• We introduce a max-margin framework for Semi non Negative Matrix Factorization

(MNMF).

• We propose an optimization scheme that solves for a max-margin classifier simul-

taneously with the decomposition matrices and bases.

1The text except of Section 2.4.1 appear as submitted to CVPR2011, manuscript id:1831
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Max-Margin Linear Semi NMF 7

The rest of the paper is organized as follows. In Section 2.2, we briefly describe

the NMF and the Semi-NMF schemes. In Section 2.3, we formulate the proposed max-

margin framework for semi-NMF as an optimization problem and describe an algorithm

to solve it. We demonstrate the performance of the proposed algorithm in Section 2.4

and, we draw conclusions in Section 2.5.

2.2 Semi Non-negative Matrix Factorization

In this section, we present a brief overview of the semi-NMF technique for matrix de-

composition. Let X ∈ Rm×n represent a non-negative matrix having n examples in its

columns. The NMF algorithm [10] decomposes X into two non-negative matrices, the

bases matrix G ∈ Rm×k and the coefficients matrix H ∈ Rk×n such that X ≈ GH. k

is typically chosen to be small (< min(m,n)) in order to accomplish dimensionality re-

duction. The columns of G can be regarded as the bases vectors and thus each example

can be represented as the linear combination of those bases vectors as xi = Ghi. Here

xi and hi are the ith columns of X and H, respectively.

Ding et al. [7] introduced Semi-NMF that relaxes the non-negativity constraints on G

and hence on the data matrix X. Their motivation was based on the case of clustering

with G representing the cluster centers and H denoting the cluster indicators. The

matrices are determined by minimizing the reconstruction error ‖X − GH‖2F or the

Kullback-Leibler divergence D(X||GH) w.r.t. G and H

argmin
H≥0

‖X−GH‖2F (2.1)

or

argmin
H≥0

D(X||GH) (2.2)

where ‖.‖ corresponds to the Frobenious norm. From now onwards we will use the

notation H ≥ 0 to specify that the elements of the matrix H are non-negative. The

above minimization problems are iteratively solved with respect to the matrices G and

H using a set of update rules [7]:

Step 1: Update G by keeping H fixed

G = XHT (HHT )−1 (2.3)
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Step2: Update H by keeping G fixed at the value computed in the above step,

H = H�

√
[GTX]+ + [GTG]−H

[GTG]+H + [GTX]−
(2.4)

where M+ and M− correspond to a possitive and a negative part of the matrix M,

respectively, given by

M+
ik =

1

2
(|Mik|+ Mik), M−

ik =
1

2
(|Mik| −Mik).

2.3 Max-Margin Semi-NMF

The NMF algorithm described in [10] minimizes either the cost function defined in

Eq. 2.1 or the one in Eq. 2.2, imposing at the same time non-negativity constraints

on G and H. These non-negativity constraints result in a part-based representation of

the data. Several variants of NMF with discriminant constraints imposed were proposed

in [7,9,27]. The variations were obtained by introducing application specific discriminant

constraints to the cost function. Inspired by this, we aim at finding a set of basis vectors

that maximizes the margin of a SVM classifier.

2.3.1 Cost Function

Let {xi, yi}Li=1 denote a set of data vectors and their corresponding labels, where xi ∈ Rm,

yi ∈ {−1, 1}. The objective is to determine a set of basis vectors that can be used to

extract features that are optimal under a max-margin classification criterion. This is

accomplished by imposing constraints on the feature vectors derived from G. Let us

assume that the projection vector for a data example xj is given by x́j = G†x where

G† corresponds to the pseudo-inverse of G and is defined as G† = (GTG)−1GT . In

practice, G† may suffer from numerical stability problems and is hard to work with

since its calculation requires a matrix inversion. In order to overcome this, we use GTx

as the features for the classifier [9,27]. Then, the optimization problem for the proposed
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criterion is given by

argmin
G,H,w,b,ξi

λ‖X−GH‖2F +
1

2
wTw + C

L∑
i=1

ξi (2.5)

s.t. yi(w
TGTxi + b) > 1− ξi

ξi > 0,∀ 1 ≤ i ≤ L, H ≥ 0

where X = {xi}Li=1, λ and C are positive constants and λ is the weight factor for the

NMF cost. The first term in the above optimization problem corresponds to the NMF

reconstruction error while the remaining terms correspond to the maximum margin clas-

sifier. The above formulation aims at maximizing the margin of the support vectors while

at the same time minimizing the reconstruction and misclassification error. The classi-

fier is trained on the projected data points GTx, obtaining in this way the hyperplane

parameter w ∈ Rk, typically k � m. We iteratively solve for one of the terms G, H

and w, b, ξi by keeping the remaining parameters fixed as described below.

The steps followed in the proposed max-margin Semi-NMF framework are summa-

rized in Algorithm 1.

Algorithm 1: Algorithm for Max-Margin Semi-NMF

input : X, Ginit, Hinit, MAXITER, λ, C
output: G, H, w, b
begin

G = Ginit;
H = Hinit;
repeat

S1 : Solve for α in Eq. 2.10
S2 : Compute G using Eq. 2.8
S3 : Find the classifier parameters, w, b for the updated G
S4 : foreach column of H do

Calculate γ using Eq. 2.18
Compute h using Eq. 2.17

end

until iter ≤MAXITER or convergence;

end
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Solve for G by keeping H,w and b fixed: Since w is fixed, the optimization problem

in Eq. 2.5 is simplified as

argmin
G,ξi

λ‖X−GH‖2F + C

L∑
i=1

ξi (2.6)

s.t. yi(w
TGTxi + b) > 1− ξi

ξi > 0,∀ 1 ≤ i ≤ L

The above formulation is a weighted combination of the reconstruction error (1st term)

and soft constraints/penalizations for the examples that do not maintain the appropri-

ate distance (margin) from the separating hyperplane (2nd term). Hence we want to

find a set of bases G that simultaneously reduce the reconstruction error and the mis-

classification. Note, that we arrived at a cost function that is quadratic or linear with

respect to the unknowns and at linear inequality constraints. We propose solving the

above problem using its dual formulation. The Lagrangian of Eq. 2.6 is given by

L(G, ξi, αi, βi) = λTr

(
(X−GH)(X−GH)T

)
+

C
L∑
i=1

ξi −
L∑
i=1

αi
[
yi(w

TGTxi + b)− 1 + ξi
]
−

L∑
i=1

βiξi (2.7)

αi, βi > 0 ∀ 1 ≤ i ≤ L

where αi, βi are the Lagrangian multipliers. Taking the derivative w.r. to the primal

variables and equating to 0, we have

∂L

∂G
= −2XHT + 2GHHT −

L∑
i=1

αiyixiw
T = 0

⇒ G =

(
2XHT +

L∑
i=1

αiyixiw
T

)
(2HHT )−1 (2.8)

∂L

∂ξi
= 0 ⇒ 0 ≤ αi ≤ θ, ∀ 1 ≤ i ≤ L (2.9)
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where θ = C/λ. Substituting the value of G in Eq. 2.7 and simplifying, we get the dual

problem

argmax
α

αT (T1 −T2)α+ (t3 − t4 − t5 − t6 + t7)α

s.t. 0 ≤ αi ≤ θ (2.10)

where

α ∈ RL, T1,T2 ∈ RL×L , t3, t4, t5, t6, t7 ∈ R1×L,

T1 =

[
L∑
k=1

yiyjh
T
kBMT

i MjBhk

]
ij

T2 =
[
y1y2w

TBMT
j xi
]
ij

t3 =

[
4

L∑
k=1

yih
T
kBHXTMiBhk

]
1i

t4 =

[
2

L∑
k=1

yih
T
kBwxTi xk

]
1i

t5 =
[
2yiw

TBHXTxi
]
1i
, t6 = b [yi]1i

t7 = [111 · · · 1]1×L , B = (2HHT )−1, Mi = xiw
T ,

(2.11)

and hk is the kth column of the matrix H.

The above problem is quadratic in α. Therefore the conventional quadratic program-

ming tools can be used to solve for α. The αi obtained is then used to compute G using

Eq. 2.8. The constant term θ in Eq. 2.10 is used as a tuning parameter. Large values

of λ (compared to C), result in low values of θ which in turn reduces αi. This causes

the second term in Eq. 2.8 to vanish making the update rule of G to be the one used in

semi-NMF, as given in Eq. 2.3. Hence for large values of λ, the update rule for G tends

to approach the update rule of semi-NMF, something that is also evident in Eq. 2.6.

Solve for w, b, ξ by keeping G and w fixed: In Eq. 2.8, we computed the

updated basis G using quadratic programming. We now keep the basis G and weight

matrix H fixed and determine a hyperplane that maximizes the margin of the classifier.

The features are obtained by projecting the data points onto the updated basis matrix.

Since G and H are fixed, the optimization problem in Eq. 2.5 is simplified to that of a
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classical SVM:

argmin
w,b,ξi

1

2
wTw + C

L∑
i=1

ξi (2.12)

s.t. yi(w
TGTxi + b) > 1− ξi

ξi > 0,∀ 1 ≤ i ≤ L.

The above optimization problem intends to maximize the margin of the classifier while

reducing the misclassification error. The hyperplane parameters w, and b are obtained

using a off-the-shelf SVM classifier.

Solve for H by keeping G, w, and b fixed: We now solve for matrix H by

keeping all the remaining variables fixed. Since only the reconstruction error term of the

optimization problem (Eq. 2.5) depends on H, the objective function is simplified as

argmin
H
‖X−GH‖2F ,

s.t. H ≥ 0 (2.13)

In order to find an H that is consistent we solve for H using quadratic programming.

The ith column of H, hi contributes only to the ith data point xi and hence the columns

of H can be solved independently of each other. The above optimization problem can

be solved using the update equation Eq. 2.4. Here we adopt an alternative optimization

method. In particular, the objective function in Eq. 2.13 can be rewritten as

L∑
i=1

‖Xi −Ghi‖2F =
L∑
i=1

(Xi −Ghi)
T (Xi −Ghi) (2.14)

where the ith column of the matrix H, denoted as hi is given by

argmin
hi

(xi −Ghi)
T (xi −Ghi),

s.t. hi ≥ 0 (2.15)

The Lagrangian of the above cost function is

L(hi) = (xi −Ghi)
T (xi −Ghi)− γThi, γ > 0 (2.16)
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where γ ∈ Rk is a vector of positive Lagrangian multiplier. Differentiating the above

equation w.r.t. hi and equating to zero, we get

hi = (2GTG)−1(2GTxi + γ) (2.17)

The dual formulation for Eq. 2.16 is given by

argmax
γ>0

1

2
γTBγ + 2γTBGTxi (2.18)

where B = (2GTG)−1

The above problem is quadratic in γ. We use a Quadratic Programming solver to solve

Eq. 2.18. The weight vector hi is obtained by substituting the computed value of γ in

Eq. 2.17. This procedure is repeated for all columns of H.

During testing, the input test vector xtest is projected onto the basis matrix to obtain

the feature vector, ftest = GTxtest. The feature vector thus obtained is applied to the

max-margin classifier which predicts the class ŷtest = sign(wT ftest+b) where w, b,G are

computed during training.

2.4 Experimental Results

In this section we demonstrate the performance of the proposed framework using both

artificial and real, publicly available datasets. More specifically, apart from an artificial

toy datasets we use the INRIA pedestrian dataset [6], a subset of the KTH actions

dataset [22] and the mushrooms1 dataset from the Proben 1 dataset [20]. To allow

comparisons with previously reported methods, we also train SVM classifiers on the

features that are exracted using Semi-NMF [7] and DNMF [27] algorithms. We show that

the classification performance of the proposed scheme that jointly learns the classifier

and performs matric factorization is consistently higher, especially when when only few

dimensions are retained.

In order to give an insight to the workings of the proposed algorithm, we first apply

it on a toy dataset consisting of two classes each of which contains 100 points that are

sampled from 50-dimensional Gaussian distributions. In order to better visualize our

results, we restrict the number of bases taken under consideration to be equal to two (k =

2). The bases matrix G and the weight matrix H are computed using the Semi-NMF
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b
a

c d

Figure 2.1: The projections and the SVM separating hyperplane using (a) PCA (b) Semi-
NMF bases. (c) Max-margin NMF bases (1st iteration) and (d) Max-margin
NMF bases (6th iteration) respectively.

algorithm and the input datapoints are projected onto the lower dimensional subspace

using the acquired G. In Fig. 2.1(a) we show the projections of the points after applying

a common dimensionality reduction technique, Principal Component Analysis (PCA).

Fig. 2.1(b) depicts the projections of the input datapoints using the bases extracted

using Semi-NMF. Fig. 2.1(c) and Fig. 2.1(d) show the projections after the first and the

sixth iterations respectively of the proposed MNMF algorithm. It is clear that in the

case of the proposed MNMF the projections are such that the different classes become

separable.

In order to examine the discriminative power of the features extracted by each of the

above mentioned methods, we trained an SVM classifier on the acquired projections and

report the obtained classification accuracies. When PCA, Semi-NMF (at convergence,

i.e. after 2000 iterations) and the proposed MNMF algorithm (at convergence, i.e. after
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only 6 iterations) were applied the accuracies obtained were equal to 96.5%, 97% and

100%, respectively. This verifies the fact that the proposed algorithm updates the bases

in such a way that the margin of the classifier in the projected space is maximized.

a

b

Figure 2.2: Sample images from the INRIA pedestrian dataset: a) Cropped positive training
examples and b) cropped negative training examples.

Subsequently, we tested our algorithm on the INRIA-pedestrian dataset [6] that

contains mostly front and back views. The dataset includes several variations caused

by partial occlusions and scale, pose, clothing and illumination changes. We created a

set of positive examples (containing pedestrians) and another one of negative examples

(by sampling the background). The extracted bounding boxes were cropped to a size of

51×100. In order to handle possible illumination changes we used as features Histogram

of Oriented Gradients (HOGs). The HOGs were extracted by creating a non-overlapping

spatial grid size of 8× 8 and using 9 orientation bins per histogram. For each histogram

four different normalizations were computed using adjacent histograms. This procedure

resulted in a vector of length equal to 36 per region. For color images, the gradient

was separately computed for each channel and the one with maximum magnitude was
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chosen, resulting in feature vectors of size 1440. In total we used 3548 positive examples

and 3795 negative examples. The positive and negative examples were cropped to a size

of 51× 100. For training, we randomly chose 200 positive and 200 negative images from

the positive and negative image sets and used the remaining 6943 images for testing.

This procedure was repeated several times and we averaged the acquired accuracies to

calculate the accuracy of the classifier. In Fig. 2.2 examples of positive (pedestrian) and

negative (background) images from the INRIA dataset are depicted.

Figure 2.3: Examples of MNMF bases.

In Fig. 2.3 some examples of the bases obtained using MNMF are depicted. It is

apparent that, similarly to when the bases are obtained using plain NMF, the bases

that are obtained by our method have good localization characteristics. In order to

compare the performance of our algorithm with semi-NMF and DNMF we report the

classification performance that is obtained when the bases that are obtained with each

of these methods are used to train an SVM-classifier. The classification performance for

different number of bases considered, that is for various values of k, is summarized in

Fig. 2.4. We note that for each k we repeat the experiments with different training sets

sampled from the main dataset and report the average accuracy over all the runs. For

simplicity, for each value of k, we used the value of C that provided the best results for

the semi-NMF+SVM algorithm as input for all the rest of the methods tested (including

ours). It can be seen that the proposed method clearly outperforms all other methods

in terms of the classification error for all values of k. In general, the relaxation of the

non-negativity constraints seems to have a positive effect as the classification accuracy

for the corresponding algorithms is higher.
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Figure 2.4: Classification accuracy vs the number of basis vectors for the INRIA dataset.

Subsequently, we test the proposed algorithm on the KTH dataset consisting of

25 subjects in four scenarios performing actions under various scale and illumination

scenarios. We consider only the videos corresponding to two similar action categories

namely walking and running. For the experiments we ignore the temporal information

and consider only the spatial one. A period containing 9 naively chosen frames was

extracted for every image sequence of every action. In order to have a better alignment

for the training data we extracted bounding boxes of size 60×80 around the objects and

we also calculated the HoG features from these images following the same procedure as

the one used for the INRIA database. In total we extracted 900 images for each action,

200 of which were used as training data and the remaining as test samples. In Fig. 2.5

we present sample images for the actions walking and running of the KTH dataset.

We compared our algorithm with Semi-NMF followed by SVMs [7] and DNMF fol-

lowed by SVMs [9] algorithms. Fig. 2.6 shows the accuracies achieved when various

numbers of bases were used. For low values of k, Semi-NMF and MNMF exhibit similar

performance. However, as the number of bases increases, we MNMF outperforms Semi-
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a

b

Figure 2.5: Examples of a) Walking and b) Running from the KTH dataset.

NMF. We should also note here that the proposed MNMF significantly outperforms the

other discriminant method tested, namely the DNMF algorithm.

We next used the mushroom1 dataset from the Probe1 database [20]. The database

consists of 8124 examples of 125 dimensions. For training, we randomly chose 200

positive and 200 negative images from each class and used the remaining 7724 samples

for testing, following the protocol adopted for the INRIA database experiments. We

compared our algorithm with Semi-NMF followed by SVMs [7] and DNMF followed by

SVMs [9] algorithms.

Fig. 2.7 shows the accuracies achieved for various numbers of bases. It can be shown

that MNMF consistently outperforms the other algorithms. The difference in the per-

formance is more significant when only a few number of bases are used, a fact that is

consistent with our findings in the experiments using the INRIA and KTH datasets.

Indeed when only 5 bases are used MNMF achieves an accuracy of 98% while the Semi-

NMF+SVM achieves an accuracy of 92.68% and DNMF+SVM an accuracy of 73%.
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Figure 2.6: Classification accuracy vs the number of basis vectors for the KTH dataset

Figure 2.7: Classification accuracy vs the number of basis vectors for the mushroom1 dataset.
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Figure 2.8: Comparison of the performance of the proposed algorithm with DNMF [27],
Semi-NMF [7] + SVM on different categories of Mediamill dataset. The graph
shows accuracies computed at different number of bases k.

2.4.1 Mediamill dataset

Finally we tested our algorithm on the object categories from the Mediamill [24] dataset.

The dataset consists of 43907 sub-shots with 101 classes. We randomly chose two object

categories from the available 101 object categories and perform a binary classification

task on the chosen object categories. Fig. 2.8 shows the results obtained for four different

experiments. Each image is represented using a 120-dimensional feature vector. We

chose two classes at a time and used the available feature vectors of those classes as

the training samples to build the classifier model. For training, we randomly chose 200

images from each classes and used the remaining images for testing. This procedure was

repeated several times and we averaged the acquired accuracies to calculate the accuracy

of the classifier.

It evident from the Fig. 2.8 that, the proposed method clearly outperforms all other

methods in terms of the classification accuracy for all values of k. In particular, we notice
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that the proposed method significantly outperforms other methods when the number of

basis vectors is small. In general, the relaxation of the non-negativity constraints seems

to have a positive effect as the classification accuracy for the corresponding algorithms

is higher.

2.5 Conclusions and Future work

In this paper we proposed a max-margin framework for Semi-NMF that introduces max-

margin constraints within the NMF formulation. We simultaneously solve for the max-

margin classifier and the decomposition matrices obtaining in this way a base matrix

that maximizes the margin of the classifier in the projection space. We demonstrated the

performance of the algorithm on a number or publicly available datasets, where it was

shown that the proposed algorithm consistently outperforms the Semi-NMF and DNMF

algorithms in terms of classification accuracy. Future work includes investigating towards

a theoretical framework for automatically choosing the parameter λ and the extension

of MNMF for non-linear cases and multiclass problems.



Chapter 3

Max-Margin Kernel Semi NMF
1

3.1 Introduction

In this paper we introduce max-margin constraints to the objective function of non-

linear version of NMF, i.e. Kernel NMF (KNMF) [28] to obtain a bases matrix that

maximizes the classification margin of the classifier in the reconstructed feature space.

In the proposed scheme we optimize a weighted combination of the reconstruction er-

ror term that is used in the typical KNMF formulations and the cost that is used in

typical SVM formulations, under SVM-type linear inequality constraints. The opti-

mization is with respect to the unknown bases and the parameters of the separating

hyperplane and is solved in an iterative manner, where at each iteration we solve only

for one of them while keeping the others fixed. The resulting sub-optimization prob-

lems are either instances of Quadratic programming with linear inequality constraints

or classical SVM-type problems. The proposed method is applied to publicly available

databases ( the KTH action and the Mediamill datasets) where we demonstrate that it

consistently outperforms SVM classification schemes that use features that are extracted

using KNMF [28], Semi-NMF [7], or DNMF [27].

Summarizing, the main contributions of this part are

• We introduce a max-margin framework for Kernel Semi non Negative Matrix Fac-

torization (KSNMF).

• We propose an optimization scheme that solves for a max-margin classifier simul-

taneously with the decomposition matrices and bases.

1The text appear as submitted to ICCV2011, manuscript id:1403

22
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The rest of the paper is organized as follows. In Section 3.2 we briefly overview the

Kernel NMF. In Section 3.3, we formulate the proposed max-margin framework for semi-

NMF as an optimization problem and describe an algorithm to solve it. We demonstrate

the performance of the proposed algorithm in Section 3.4 and, we draw conclusions in

Section 3.5.

Most of the NMF methods in the literature are linear in nature and cannot capture

the non-linear structure inherent in the data. Zhang et al. [28] proposed the kernel

extension of NMF (KNMF) that significantly improves the performance over NMF in

classification applications. We briefly describe the KNMF method in the following sec-

tion.

3.2 Overview of KNMF

Let Φ denote a non-linear transformation that maps data x ∈ Rm in the input space to

a higher dimensional feature space, i.e. Φ : x ∈ Rm → Φ(x) ∈ Rf , typically f � m. Let

Φ(X) = [Φ(x1), Φ(x2) · · ·Φ(xn)] denote the data matrix where each example Φ(xi) ∈ Rf .

KNMF decomposes the data matrix as

Φ(X) ≈ GΦH (3.1)

where the base matrix GΦ ∈ Rf×k contains the basis vectors in the feature space and

the coefficients matrix H ∈ Rk×n indicates the contribution of each basis vector in

the reconstruction of the example. In practice, the computation of Φ(X) and GΦ is

impractical and thus kernel trick [2] is employed to efficiently compute the similarities

in the feature space,

K ≈ YH

K = ΦT (X)Φ(X) is the kernel matrix, Y = ΦT (X)GΦ. The coefficient vector htest for a

test example xtest is given by,

htest = Y†Ktest

Ktest = ΦT (X)Φ(xtest) and † denotes the pseudo-inverse.
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3.3 Max-Margin Semi-NMF

The NMF algorithm described in [10] minimizes either the cost function defined in

Eq. 2.1 or the one in Eq. 2.2, imposing at the same time non-negativity constraints

on G and H. These non-negativity constraints result in a part-based representation of

the data. Several variants of NMF with discriminant constraints imposed were proposed

in [7,9,27]. The variations were obtained by introducing application specific discriminant

constraints to the cost function. Inspired by this, we impose discriminant constraints

on the cost function of KNMF. We aim at finding a set of basis vectors in the feature

space that maximizes the margin of a SVM classifier in the feature space.

3.3.1 Cost Function

Let {Φ(xi), yi}
L
i=1 denote a set of data vectors in the feature space and their correspond-

ing labels, where Φ(xi) ∈ Rf , yi ∈ {−1, 1}. The objective is to determine a set of basis

vectors that can be used to reconstruct the data in the feature space that are optimal un-

der a max-margin classification criterion. This is accomplished by imposing constraints

on the reconstructed data computed using the base matrix GΦ. Let the reconstructed

vector for a data example Φ(xj) is given by Φ(x̃j) ≈ GΦhj where hj is the coefficient

vector. We need to find bases that maximize the margin of the SVM classifier computed

for the reconstructed data vectors. The optimization problem for the proposed criterion

is given by

argmin
GΦ,H,wΦ,b,ξi

λ‖Φ(X)−GΦH‖2F +
1

2
wΦ

TwΦ + C

L∑
i=1

ξi (3.2)

s.t. yi(wΦ
TGΦhi + b) > 1− ξi

ξi > 0,∀ 1 ≤ i ≤ L, H ≥ 0

where Φ(X) = {Φ(xi)}Li=1, λ and C are positive constants and λ is the weight factor

for the KNMF cost. The first term in the above optimization problem corresponds to

the KNMF reconstruction error while the remaining terms correspond to the maximum

margin classifier. The above formulation aims at maximizing the margin of the support

vectors while at the same time minimizing the reconstruction and misclassification error.

The classifier is trained on the reconstructed data points GΦh, obtaining in this way the
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hyperplane parameter wΦ ∈ Rf . We iteratively solve for one of the terms GΦ, H and

wΦ, b, ξi by keeping the remaining parameters fixed.

Let us note that since the columns of the base matrix GΦ, data matrix Φ(X) and

the SVM hyperplane parameter wΦ are in the feature space, they are not explicitly

computed. Instead, we solve explicitly for the parameters of the dual formulations of

the constrained optimization problems to which we arrive and use them in order to

calculate quantities that are dot products in the feature space. More specifically, when

we implicitly solve for GΦ, we explicitly calculate GT
ΦGΦ and GT

ΦΦ(X), and when we

implicitly solve for the max-margin hyperplane wΦ we explicitly calculate wT
ΦwΦ and

wT
ΦΦ(X). To compute the data kernel matrix Φ(X)TΦ(X) we use the Gaussian kernel [2],

k(x,y) = exp

(
−‖x− y‖2

σ2

)
(3.3)

The steps followed in the proposed max-margin Semi-NMF framework are summa-

rized in Algorithm 2.

Algorithm 2: Algorithm for Max-Margin Semi-KNMF

input : X, Hinit, MAXITER, λ, C,σ
output: GT

ΦGΦ, H, wΦ, b
begin

H = Hinit;
repeat

S1 : Solve for α in Eq. 3.8
S2 : Compute GT

ΦGΦ using the values of α as in Eq. 3.10
S3 : Compute the kernel matrix HTGT

ΦGΦH S4 : Use the computed kernel
matrix to find the classifier parameters, wΦ, b.
S5 : foreach column of H do

Calculate γ using Eq. 3.18
Compute h using Eq. 3.17

end

until iter ≤MAXITER or convergence;

end



Max-Margin Kernel Semi NMF 26

Solve for GΦ by keeping H,wΦ and b fixed: Since wΦ is fixed, the optimization

problem in Eq. 3.2 is simplified as

argmin
GΦ,ξi

λ‖Φ(X)−GΦH‖2F + C

L∑
i=1

ξi (3.4)

s.t. yi(wΦ
TGΦhi + b) > 1− ξi

ξi > 0,∀ 1 ≤ i ≤ L

The above formulation is a weighted combination of the reconstruction error (1st term)

and soft constraints/penalizations for the examples that do not maintain the appropri-

ate distance (margin) from the separating hyperplane (2nd term). Hence we want to

find a set of bases GΦ that simultaneously reduce the reconstruction error and the mis-

classification. Note, that we arrived at a cost function that is quadratic or linear with

respect to the unknowns and at linear inequality constraints. We propose solving the

above problem using its dual formulation. The Lagrangian of Eq. 3.4 is given by

L(GΦ, ξi, αi, βi) =

λTr

((
Φ(X)−GΦH

)(
Φ(X)−GΦH

)T)
+

C
L∑
i=1

ξi −
L∑
i=1

αi
[
yi(wΦ

TGΦhi) + b)− 1 + ξi
]
−

L∑
i=1

βiξi (3.5)

αi, βi > 0 ∀ 1 ≤ i ≤ L

where αi, βi are the Lagrangian multipliers. Taking the derivative w.r. to the primal

variables and equating to 0, we have

∂L

∂GΦ

= −2Φ(X)HT + 2GΦHHT −
L∑
i=1

αiyiwΦhTi = 0

⇒ GΦ =

(
2Φ(X)HT +

L∑
i=1

αiyiwΦhTi

)
(2HHT )−1 (3.6)

∂L

∂ξi
= 0 ⇒ 0 ≤ αi ≤ θ, ∀ 1 ≤ i ≤ L (3.7)
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where θ = C/λ. Substituting the value of GΦ in Eq. 3.5 and simplifying, we get the

dual problem

argmax
α

αT (T1 −T2)α+ (t3 − t4 − t5 − t6 + t7)α

s.t. 0 ≤ αi ≤ θ (3.8)

where

α ∈ RL, T1,T2 ∈ RL×L , t3, t4, t5, t6, t7 ∈ R1×L,

T1 =

[
L∑
k=1

yiyjh
T
kBhiw

T
ΦwΦhjBhk

]
ij

T2 =
[
yiyjw

T
ΦwΦhTi Bhj

]
ij

t3 =

[
4

L∑
k=1

yih
T
kBHΦ(X)TwΦhiBhk

]
1i

t4 =

[
2

L∑
k=1

yih
T
kBhiw

T
ΦΦ(X)

]
1i

t5 =
[
2yiw

TΦ(X)HTBhi
]
1i
, t6 = b [yi]1i

t7 = [111 · · · 1]1×L , B = (2HHT )−1

(3.9)

and hk is the kth column of the matrix H.

The above problem is quadratic in α. Therefore conventional quadratic programming

tools can be used to solve for α. Once α is estimated we can compute

GT
ΦGΦ = BT

(
4HΦ(X)TΦ(X)HT + 4

L∑
i=1

αiyiHΦ(X)T

wΦhTi + wT
ΦwΦ

L∑
i=1

L∑
j=1

αiαjyiyjhih
T
j

)
B (3.10)

and

GT
ΦΦ(X) = B

(
HΦ(X)TΦ(X) +

L∑
i=1

αiyihiw
T
ΦΦ(X)

)
(3.11)

that are used in the subsequent optimization problems (e.g. Eq. 3.17 and Eq. 3.18).
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The constant term θ in Eq. 3.8 is used as a tuning parameter. Large values of λ

(compared to C), result in low values of θ which in turn reduces αi. This causes the

second term in Eq. 3.6 to vanish making the update rule of GΦ to be the one used in

semi-KNMF. Hence for large values of λ, the update rule for GΦ tends to approach the

update rule of semi-KNMF.

Solve for wΦ, b, ξ by keeping GΦ and H fixed: In Eq. 3.6, we computed the

updated basis GΦ using quadratic programming. We now keep the basis GΦ and weight

matrix H fixed and determine a hyperplane that maximizes the margin of the classifier.

The features are obtained by reconstructing the data points in the feature space using

updated basis matrix. Since GΦ and H are fixed, the optimization problem in Eq. 3.2

is simplified to that of a classical SVM:

argmin
wΦ,b,ξi

1

2
wT
ΦwΦ + C

L∑
i=1

ξi (3.12)

s.t. yi(w
T
ΦGΦhi + b) > 1− ξi

ξi > 0,∀ 1 ≤ i ≤ L.

The above optimization problem intends to maximize the margin of the classifier in

the feature space while reducing the misclassification error. The hyperplane parameters

wΦ, and b are obtained using a off-the-shelf SVM classifier. The later takes as input the

kernel matrix in the feature space, that is HTGT
ΦGΦH. This can be calculated using the

GT
ΦGΦ that is explicitly computed in Eq. 3.10 and H. After obtaining the support vectors

and the solution of the dual formulation of the problem, we can explicitly compute wT
ΦwΦ

and wT
ΦΦ(X).

Solve for H by keeping GΦ, wΦ, and b fixed: We now solve for matrix H by

keeping all the remaining variables fixed. Since only the reconstruction error term of the

optimization problem (Eq. 3.2) depends on H, the objective function is simplified as

argmin
H
‖Φ(X)−GΦH‖2F ,

s.t. H ≥ 0 (3.13)

In order to find an H that is consistent we solve for H using quadratic programming. The

ith column of H, hi contributes only to the ith data point Φ(xi) and hence the columns

of H can be solved independently of each other. The above optimization problem can

be solved using the regular update equations of NMF. Here we adopt an alternative
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optimization method. In particular, the objective function in Eq. 3.13 can be rewritten

as

L∑
i=1

‖Φ(Xi)−GΦhi‖2F =
L∑
i=1

(Φ(Xi)−GΦhi)
T (3.14)

(Φ(Xi)−GΦhi)

where the ith column of the matrix H, denoted as hi is given by

argmin
hi

(Φ(xi)−GΦhi)
T (Φ(xi)−GΦhi),

s.t. hi ≥ 0 (3.15)

The Lagrangian of the above cost function is

L(hi) = (Φ(xi)−GΦhi)
T (Φ(xi)−GΦhi)− γThi, γ > 0 (3.16)

where γ ∈ Rk is a vector of positive Lagrangian multiplier. Differentiating the above

equation w.r.t. hi and equating to zero, we get

hi = (2GT
ΦGΦ)−1(2GT

ΦΦ(xi) + γ) (3.17)

The dual formulation for Eq. 3.16 is given by

argmax
γ>0

1

2
γTMγ + 2γTMGT

ΦΦ(xi) (3.18)

where M = (2GT
ΦGΦ)−1

The above problem is quadratic in γ. We use a Quadratic Programming solver to solve

Eq. 3.18. The weight vector hi is obtained by substituting the computed value of γ in

Eq. 3.17. This procedure is repeated for all columns of H.

During testing, the weight vector ht for the test data xt is computed as ht =

(GT
ΦGΦ)−1(GT

ΦΦ(xt)) where GT
ΦGΦ is computed in Eq. 3.10 and GT

ΦΦ(xt) by substi-

tuting X with xt in Eq. 3.11. Then we compute the kernel matrix between the training

and test samples as HTGT
ΦGΦht. This matrix is input to the SVM classifier that classifies

the given test data.
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3.4 Experimental Results

In this section we demonstrate the performance of the proposed framework using publicly

available datasets. More specifically, we use several object categories from the Mediamill

dataset [24] and a subset of the KTH actions dataset [22]. To allow comparisons with

previously reported methods, we use a baseline method DNMF [27], we also train SVM

classifiers on the features that are exracted using Semi-NMF [7] and KNMF [28] algo-

rithms. We show that the classification performance of the proposed scheme that jointly

learns the classifier and performs matrix factorization is consistently higher, especially

when only few dimensions are retained.

In our experiments, the value of σ in Eq. 3.3 was chosen to be same for both the

proposed and the KNMF [28] algorithm. The parameter σ was set to be the standard

deviation of the data, that is σ2 =
1

N

∑N
i=1‖xi − x‖2 [28]. We set the parameter values

C = 100 and K = 105 for all the experiments.

We first tested our algorithm on the object categories from the Mediamill [24] dataset.

The dataset consists of 43907 sub-shots with 101 classes. We randomly chose two object

categories from the available 101 object categories and perform a binary classification

task on the chosen object categories. Fig. 3.1 shows the results obtained for six different

experimentss. Each image is represented using a 120-dimensional feature vector. We

chose two classes at a time and used the available feature vectors of those classes as

the training samples to build the classifier model. For training, we randomly chose 200

images from each classes and used the remaining images for testing. This procedure was

repeated several times and we averaged the acquired accuracies to calculate the accuracy

of the classifier.

In order to compare the performance of our algorithm with semi-NMF [7], and

KNMF [28] we report the classification performance that is obtained when the bases

that are obtained with each of these methods are used to train an SVM-classifier. The

classification performance for different number of bases, that is for various values of k, is

summarized in Fig. 3.1. We note that for each k we repeat the experiments with different

training sets sampled from the main dataset and report the average accuracy over all the

runs. For simplicity, for each value of k, we used the value of C (100) that provided the

best results for the KNMF+SVM algorithm as input for all the other methods tested

(including ours). It can be seen that the proposed method clearly outperforms all other

methods in terms of the classification error for all values of k. In particular, we notice
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Figure 3.1: Comparison of the performance of the proposed algorithm with DNMF [27],
Semi-NMF [7] + SVM, KNMF [28] + SVM on different categories of Mediamill
dataset. The graph shows accuracies computed at different number of bases k.
It is evident from the graph that the Proposed method significantly out-performs
other methods particularly when k is low
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that the proposed method significantly outperforms other methods when the number of

basis vectors is small. In general, the relaxation of the non-negativity constraints seems

to have a positive effect as the classification accuracy for the corresponding algorithms

is higher.
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Figure 3.2: Classification accuracy vs the number of basis vectors for the KTH dataset

Subsequently, we test the proposed algorithm on the KTH dataset consisting of

25 subjects in four scenarios performing actions under various scale and illumination

scenarios. We consider only the videos corresponding to two similar action categories

namely walking and running. In order to handle possible illumination changes we

used as features Histogram of Oriented Gradients (HOGs). The HOGs were extracted

by creating a non-overlapping spatial grid size of 8 × 8 and using 9 orientation bins

per histogram. For each histogram four different normalizations were computed using

adjacent histograms. This procedure resulted in a vector of length equal to 36 per region.

For color images, the gradient was separately computed for each channel and the one

with maximum magnitude was chosen, resulting in feature vectors of size 1440. For the

experiments we ignore the temporal information and consider only the spatial one. A

period containing 9 naively chosen frames was extracted for every image sequence of

every action. In order to have a better alignment for the training data we extracted

bounding boxes of size 60 × 80 around the objects and we also calculated the HoG
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features from these images following the same procedure as the one used for the INRIA

database. In total we extracted 900 images for each action, 200 of which were used as

training data and the remaining as test samples.

We compared our algorithm with Semi-NMF, followed by SVMs [7], KNMF Semi-

NMF, followed by SVMs [28] and DNMF followed by SVMs [9] algorithms. Fig. 3.2

shows the accuracies achieved when various numbers of bases were used. For low values

of k, Semi-NMF and MNMF exhibit similar performance. However, as the number of

bases increases, we outperform Semi-NMF. We should also note here that the proposed

algorithm significantly outperforms the other discriminant method tested, namely the

DNMF algorithm.

3.5 Conclusions and Future work

In this paper we proposed a max-margin framework for Kernel Semi-NMF that intro-

duces max-margin constraints within the KNMF formulation. We simultaneously solve

for the max-margin classifier and the decomposition matrices obtaining in this way a

base matrix that maximizes the margin of the classifier in the reconstructed space.

We demonstrated the performance of the algorithm on a number or publicly available

datasets, where it was shown that the proposed algorithm consistently outperforms

the Semi-NMF and DNMF algorithms in terms of classification accuracy. Future work

includes investigating towards a theoretical framework for automatically choosing the

parameter λ and the extension to multiclass problems.



Max-Margin Kernel Semi NMF 34



Bibliography

[1] A. Agarwal and B. Triggs. A local basis representation for estimating human pose

from cluttered images. In ACCV, pages 50–59, 2006.

[2] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,

2006.

[3] C. Boutsidis and E. Gallopoulos. Svd based initialization: A head start for non-

negative matrix factorization. Pattern Recognition, 41(4):1350–1362, 2008.

[4] D. Cai, X. He, X. Wu, and J. Hans. Non-negative matrix factorization on manifold.

In ICDM, 2008.

[5] X. Chen, L. Gu, S. Z. Li, and H.-J. Zhang. Learning representative local features

for face detection. In CVPR, volume 1, pages 1126–1131, 2001.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In

CVPR, pages 886–893, 2005.

[7] C. H. Q. Ding, T. Li, and M. I. Jordan. Convex and semi-nonnegative matrix

factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence,

32(1):45–55, 2010.

[8] P. O. Hoyer. Non-negative sparse coding. In IEEE Workshop on Neural Networks

for Signal Processing, pages 557–565, 2002.

[9] I. Kotsia, S. Zafeiriou, and I. Pitas. A novel discriminant non-negative matrix

factorization algorithm with applications to facial image characterization problems.

IEEE Transactions on Information Forensics and Security, 2(3):588–595, 2007.

[10] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401:788–791, 1999.

[11] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In

NIPS, pages 556–562, 2000.

[12] S. Z. Li, X. W. Hou, H. J. Zhang, and Q. S. Cheng. Learning spatially localized,

parts-based representation. In CVPR, volume 1, pages 207–212, 2001.

[13] C. J. lin. Projected gradient methods for non-negative matrix factorization, 2005.

Tech. Rep., Department of Computer Science, National Taiwan University.

35



Bibliography 36

[14] C. J. lin. On the convergence of multiplicative update algorithms for non-negative

matrix factorization. pages 1589–1596, 2007. IEEE Transactions on Neural Net-

works.

[15] W. Liu and N. Zhen. Non-negative matrix factorization based methods for object

recognition. In Pattern Recognition Letters, volume 25, pages 893–897, 2004.

[16] W. Liu, N. Zheng, and X. Lu. Non-negative matrix factorization for visual coding.

In IEEE International Conference on Acoustics, Speech, and Signal Processing,

volume 3, pages 293–296, 2003.

[17] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor

model with optimal utilization of error estimates of data values. Environmetrics,

5(2):111–126, 1994.

[18] P. Paatero and U. Tapper. Least squares formulation of robust non-negative factor

analysis. Chemometrics and Intelligent Laboratory Systems, 37:23–35, 1997.

[19] A. Pascual-Montano, J. Carazo, K. Kochi, D. Lehmann, and R. D. Pascual-Marqui.

Nonsmooth nonnegative matrix factorization (nsnmf). IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 28(3):403–415, 2006.

[20] L. Prechelt. Proben1 a set of neural networks benchmark problems and bench-

marking rules, 1994. Technical Report 21/94, Universitat Karlsruhe, Germany.

[21] P. M. Roth, T. Mauthner, I. Khan, and H. Bischof. Efficient human action recogni-

tion by cascaded linear classification. In IEEE Workshop on Video-Oriented Object

and Event Classification, 2009.

[22] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local svm

approach. ICPR, 2004.

[23] L. Sirovich and M. Kirby. Low-dimensional procedure for the characterization of

human faces. Journal of the Optical Society of America A, 4(3):519–524, 1987.

[24] C. G. Snoek, M. Worring, J. C. van Gemert, J.-M. Geusebroek, and A. W. Smeul-

ders. The challenge problem for automated detection of 101 semantic concepts in

multimedia. In Proceedings of the ACM Multimedia, pages 421–430, 2006.

[25] C. Thurau and V. Hlavac. Pose primitive based human action recognition in videos

or still images. In CVPR, pages 1–8, 2008.

[26] Y. Wang and Y. Jia. Fisher non-negative matrix factorization for learning local

features. In ACCV, volume 1, pages 27–30, 2004.

[27] S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas. Exploiting discriminant information in

nonnegative matrix factorization with application to frontal face verification. IEEE

Transactions on Neural Networks, 17(3):683–695, 2006.



Bibliography 37

[28] D. Zhang, Z. Zhou, and S. Chen. Non-negative matrix factorization on kernels. In

PRICAI, pages 404–412, 2006.


	Abstract
	Introduction
	Max-Margin Linear Semi NMF
	Introduction
	Semi Non-negative Matrix Factorization
	Max-Margin Semi-NMF
	Cost Function

	Experimental Results
	Mediamill dataset

	Conclusions and Future work

	Max-Margin Kernel Semi NMF
	Introduction
	Overview of KNMF
	Max-Margin Semi-NMF
	Cost Function

	Experimental Results
	Conclusions and Future work


