22 research outputs found
PvRON2, a new Plasmodium vivax rhoptry neck antigen
<p>Abstract</p> <p>Background</p> <p>Rhoptries are specialized organelles from parasites belonging to the phylum <it>Apicomplexa</it>; they secrete their protein content during invasion of host target cells and are sorted into discrete subcompartments within rhoptry neck or bulb. This distribution is associated with these proteins' role in tight junction (TJ) and parasitophorous vacuole (PV) formation, respectively.</p> <p>Methods</p> <p><it>Plasmodium falciparum </it>RON2 amino acid sequence was used as bait for screening the codifying gene for the homologous protein in the <it>Plasmodium vivax </it>genome. Gene synteny, as well as identity and similarity values, were determined for <it>ron2 </it>and its flanking genes among <it>P. falciparum</it>, <it>P. vivax </it>and other malarial parasite genomes available at PlasmoDB and Sanger Institute databases. <it>Pvron2 </it>gene transcription was determined by RT-PCR of cDNA obtained from the <it>P. vivax </it>VCG-1 strain. Protein expression and localization were assessed by Western blot and immunofluorescence using polyclonal anti-<it>Pv</it>RON2 antibodies. Co-localization was confirmed using antibodies directed towards specific microneme and rhoptry neck proteins.</p> <p>Results and discussion</p> <p>The first <it>P. vivax </it>rhoptry neck protein (named here <it>Pv</it>RON2) has been identified in this study. <it>Pv</it>RON2 is a 2,204 residue-long protein encoded by a single 6,615 bp exon containing a hydrophobic signal sequence towards the amino-terminus, a transmembrane domain towards the carboxy-terminus and two coiled coil α-helical motifs; these are characteristic features of several previously described vaccine candidates against malaria. This protein also contains two tandem repeats within the interspecies variable sequence possibly involved in evading a host's immune system. <it>Pv</it>RON2 is expressed in late schizonts and localized in rhoptry necks similar to what has been reported for <it>Pf</it>RON2, which suggests its participation during target cell invasion.</p> <p>Conclusions</p> <p>The identification and partial characterization of the first <it>P. vivax </it>rhoptry neck protein are described in the present study. This protein is homologous to <it>Pf</it>RON2 which has previously been shown to be associated with <it>Pf</it>AMA-1, suggesting a similar role for <it>Pv</it>RON2.</p
PvRON2, a new Plasmodium vivax rhoptry neck antigen
Background: Rhoptries are specialized organelles from parasites belonging to the phylum Apicomplexa; they
secrete their protein content during invasion of host target cells and are sorted into discrete subcompartments
within rhoptry neck or bulb. This distribution is associated with these proteins’ role in tight junction (TJ) and
parasitophorous vacuole (PV) formation, respectively.
Methods: Plasmodium falciparum RON2 amino acid sequence was used as bait for screening the codifying gene
for the homologous protein in the Plasmodium vivax genome. Gene synteny, as well as identity and similarity
values, were determined for ron2 and its flanking genes among P. falciparum, P. vivax and other malarial parasite
genomes available at PlasmoDB and Sanger Institute databases. Pvron2 gene transcription was determined by
RT-PCR of cDNA obtained from the P. vivax VCG-1 strain. Protein expression and localization were assessed by
Western blot and immunofluorescence using polyclonal anti-PvRON2 antibodies. Co-localization was confirmed
using antibodies directed towards specific microneme and rhoptry neck proteins.
Results and discussion: The first P. vivax rhoptry neck protein (named here PvRON2) has been identified in this
study. PvRON2 is a 2,204 residue-long protein encoded by a single 6,615 bp exon containing a hydrophobic signal
sequence towards the amino-terminus, a transmembrane domain towards the carboxy-terminus and two coiled
coil a-helical motifs; these are characteristic features of several previously described vaccine candidates against
malaria. This protein also contains two tandem repeats within the interspecies variable sequence possibly involved
in evading a host’s immune system. PvRON2 is expressed in late schizonts and localized in rhoptry necks similar to
what has been reported for PfRON2, which suggests its participation during target cell invasion.
Conclusions: The identification and partial characterization of the first P. vivax rhoptry neck protein are described
in the present study. This protein is homologous to PfRON2 which has previously been shown to be associated
with PfAMA-1, suggesting a similar role for PvRON2
EDUCACIÓN AMBIENTAL Y SOCIEDAD. SABERES LOCALES PARA EL DESARROLLO Y LA SUSTENTABILIDAD
Este texto contribuye al análisis científico de varias áreas del conocimiento como la filosofía social, la patología, la educación para el cuidado del medio ambiente y la sustentabilidad que inciden en diversas unidades de aprendizaje de la Licenciatura en Educación para la Salud y de la Maestría en Sociología de la SaludLas comunidades indígenas de la sierra norte de Oaxaca México, habitan un territorio extenso de biodiversidad. Sin que sea una área protegida y sustentable, la propia naturaleza de la región ofrece a sus visitantes la riqueza de la vegetación caracterizada por sus especies endémicas que componen un paisaje de suma belleza
Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study
Summary
Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally.
Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies
have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of
the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income
countries globally, and identified factors associated with mortality.
Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to
hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis,
exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a
minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical
status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary
intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause,
in-hospital mortality for all conditions combined and each condition individually, stratified by country income status.
We did a complete case analysis.
Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital
diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal
malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome
countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male.
Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3).
Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income
countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups).
Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome
countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries;
p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients
combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11],
p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20
[1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention
(ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety
checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed
(ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of
parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65
[0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality.
Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome,
middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will
be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger
than 5 years by 2030
PvRON2, a new Plasmodium vivax rhoptry neck antigen
Background: Rhoptries are specialized organelles from parasites belonging to the phylum Apicomplexa; they
secrete their protein content during invasion of host target cells and are sorted into discrete subcompartments
within rhoptry neck or bulb. This distribution is associated with these proteins’ role in tight junction (TJ) and
parasitophorous vacuole (PV) formation, respectively.
Methods: Plasmodium falciparum RON2 amino acid sequence was used as bait for screening the codifying gene
for the homologous protein in the Plasmodium vivax genome. Gene synteny, as well as identity and similarity
values, were determined for ron2 and its flanking genes among P. falciparum, P. vivax and other malarial parasite
genomes available at PlasmoDB and Sanger Institute databases. Pvron2 gene transcription was determined by
RT-PCR of cDNA obtained from the P. vivax VCG-1 strain. Protein expression and localization were assessed by
Western blot and immunofluorescence using polyclonal anti-PvRON2 antibodies. Co-localization was confirmed
using antibodies directed towards specific microneme and rhoptry neck proteins.
Results and discussion: The first P. vivax rhoptry neck protein (named here PvRON2) has been identified in this
study. PvRON2 is a 2,204 residue-long protein encoded by a single 6,615 bp exon containing a hydrophobic signal
sequence towards the amino-terminus, a transmembrane domain towards the carboxy-terminus and two coiled
coil a-helical motifs; these are characteristic features of several previously described vaccine candidates against
malaria. This protein also contains two tandem repeats within the interspecies variable sequence possibly involved
in evading a host’s immune system. PvRON2 is expressed in late schizonts and localized in rhoptry necks similar to
what has been reported for PfRON2, which suggests its participation during target cell invasion.
Conclusions: The identification and partial characterization of the first P. vivax rhoptry neck protein are described
in the present study. This protein is homologous to PfRON2 which has previously been shown to be associated
with PfAMA-1, suggesting a similar role for PvRON2
A homozygous donor splice-site mutation in the meiotic gene MSH4 causes primary ovarian insufficiency
Premature ovarian insufficiency (POI) is a frequent pathology that affects women under 40 years of age, characterized by an early cessation of menses and high FSH levels. Despite recent progresses in molecular diagnosis, the etiology of POI remains idiopathic in most cases. Whole-exome sequencing of members of a Colombian family affected by POI allowed us to identify a novel homozygous donor splice-site mutation in the meiotic gene MSH4 (MutS Homolog 4). The variant followed a strict mendelian segregation within the family and was absent in a cohort of 135 women over 50 years of age without history of infertility, from the same geographical region as the affected family. Exon trapping experiments showed that the splice-site mutation induced skipping of exon 17. At the protein level, the mutation p.Ile743_Lys785del is predicted to lead to the ablation of the highly conserved Walker B motif of the ATP-binding domain, thus inactivating MSH4. Our study describes the first MSH4 mutation associated with POI and increases the number of meiotic/DNA repair genes formally implicated as being responsible for this condition. © The Author 2017. Published by Oxford University Press. All rights reserved
A homozygous donor splice-site mutation in the meiotic gene MSH4 causes primary ovarian insufficiency
Premature ovarian insufficiency (POI) is a frequent pathology that affects women under 40 years of age, characterized by an early cessation of menses and high FSH levels. Despite recent progresses in molecular diagnosis, the etiology of POI remains idiopathic in most cases. Whole-exome sequencing of members of a Colombian family affected by POI allowed us to identify a novel homozygous donor splice-site mutation in the meiotic gene MSH4 (MutS Homolog 4). The variant followed a strict mendelian segregation within the family and was absent in a cohort of 135 women over 50 years of age without history of infertility, from the same geographical region as the affected family. Exon trapping experiments showed that the splice-site mutation induced skipping of exon 17. At the protein level, the mutation p.Ile743_Lys785del is predicted to lead to the ablation of the highly conserved Walker B motif of the ATP-binding domain, thus inactivating MSH4. Our study describes the first MSH4 mutation associated with POI and increases the number of meiotic/DNA repair genes formally implicated as being responsible for this condition. © The Author 2017. Published by Oxford University Press. All rights reserved
Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion
Plasmodium falciparum malaria parasite invasion of erythrocytes is an essential step in host infection and the proteins involved in such invasion are the main target in developing an antimalarial vaccine. Secretory organelle-derived proteins (micronemal AMA1 protein and the RON2, 4, and 5 rhoptry neck proteins) have been recently described as components of moving junction complex formation allowing merozoites to move into a newly created parasitophorous vacuole. This study led to identifying RON5 regions involved in binding to human erythrocytes by using a highly robust, sensitive and specific receptor-ligand interaction assay; it is further shown that the RON5 protein remains highly conserved throughout different parasite strains. It is shown that the binding peptide-erythrocyte interaction is saturable and sensitive to chymotrypsin and trypsin. Invasion inhibition assays using erythrocyte binding peptides showed that the RON5-erythrocyte interaction could be critical for merozoite invasion of erythrocytes. This work provides evidence (for the first time) suggesting a fundamental role for RON5 in erythrocyte invasion. © 2013 Elsevier Inc
Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion
Plasmodium falciparum malaria parasite invasion of erythrocytes is an essential step in host infection and the proteins involved in such invasion are the main target in developing an antimalarial vaccine. Secretory organelle-derived proteins (micronemal AMA1 protein and the RON2, 4, and 5 rhoptry neck proteins) have been recently described as components of moving junction complex formation allowing merozoites to move into a newly created parasitophorous vacuole. This study led to identifying RON5 regions involved in binding to human erythrocytes by using a highly robust, sensitive and specific receptor-ligand interaction assay; it is further shown that the RON5 protein remains highly conserved throughout different parasite strains. It is shown that the binding peptide-erythrocyte interaction is saturable and sensitive to chymotrypsin and trypsin. Invasion inhibition assays using erythrocyte binding peptides showed that the RON5-erythrocyte interaction could be critical for merozoite invasion of erythrocytes. This work provides evidence (for the first time) suggesting a fundamental role for RON5 in erythrocyte invasion. © 2013 Elsevier Inc