595 research outputs found

    Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    Get PDF
    The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, vmax decreased significantly (P < 0.05) and KM increased (although not always significantly) with the increase in t. The conformational changes produced in the starch chains as a consequence of the ageing seemed to affect negatively the diffusivity of the starch to the active site of the enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]

    JAX FDM: A differentiable solver for inverse form-finding

    Full text link
    We introduce JAX FDM, a differentiable solver to design mechanically efficient shapes for 3D structures conditioned on target architectural, fabrication and structural properties. Examples of such structures are domes, cable nets and towers. JAX FDM solves these inverse form-finding problems by combining the force density method, differentiable sparsity and gradient-based optimization. Our solver can be paired with other libraries in the JAX ecosystem to facilitate the integration of form-finding simulations with neural networks. We showcase the features of JAX FDM with two design examples. JAX FDM is available as an open-source library at this URL: https://github.com/arpastrana/jax_fdm.Comment: https://github.com/arpastrana/jax_fd

    Estrategias para mejorar el comportaniento lector de los ni?os en el primer a?o de b?sica primaria de la sede Camilo Torres de la instituci?n educativa Policarpa Salavarrieta de la ciudad de Girardot

    Get PDF
    255 p. Recurso Electr?nicoLa investigaci?n ?Estrategias para mejorar el comportamiento lector de los ni?os en el primer a?o de la b?sica primaria de la sede Camilo Torres de la instituci?n educativa Policarpa Salavarrieta de la ciudad de Girardot? pretende analizar el estado inicial del comportamiento lector de los ni?os de la sede Camilo Torres y dise?ar un plan de acci?n que incluya diversas estrategias did?cticas para mejorarlo. Para identificar los aspectos abordados en la investigaci?n se tom? la muestra total de los ni?os del grado primero de la sede, a quienes se les realiz? una entrevista semiestructurada con preguntas abiertas que posteriormente fueron analizadas desde la perspectiva del enfoque de la investigaci?n cualitativa para realizar un proceso descriptivo y comprensivo de los fen?menos sociales observados. Con respecto a la comprensi?n de los datos se realiz? inicialmente el proceso de transcripci?n, sistematizaci?n y codificaci?n en esquemas que permitieron categorizar, ordenar y llegar a conclusiones generales a partir de las respuestas de los ni?os, posteriormente se dio el proceso de construcci?n de tres redes sist?micas que permitieron hacer el levantamiento de tres categor?as de an?lisis. De igual manera se realiz? una revisi?n te?rica de los elementos claves en el desarrollo del comportamiento lector pasando por la historia de la lectura, conceptos de la did?ctica de la lengua y la motivaci?n en la lectura. Basados en los resultados y como producto de la confrontaci?n de la teor?a y la pr?ctica se cre? un conjunto de nueve estrategias did?cticas para mejorar el comportamiento lector de los ni?os.The research ?Strategies to improve reading behavior of children in the first year of elementary school Camilo Torres headquarters of the school Policarpa Salavarrieta of Girardot city? analyzes the initial state of the reading behavior of children Camilo Torres headquarters and designs an action plan that includes various didactic strategies to improve it. In order to identify the issues raised in the investigation the total sample of children enrolled in the first grade of headquarters, who underwent a semistructured interview with open questions which were subsequently analyzed from the perspective of the approach to be taken qualitative research to carry out a descriptive and understanding of social phenomena observed process. With regard to the understanding of the transcription process data, systematization and coding schemes that enabled categorize, organize, and to draw general conclusions from the responses of children, then the process of construction of three systemic networks were initially performed that allowed you lift three analysis categories. Similarly a theoretical review of the key elements in the development of the reading behavior through the history of reading, concepts of didactic language and motivation in reading was performed. Based on the results and as a result of the confrontation of theory and practice a set of nine didactic strategies was established to improve the reading behavior of children. Keywords: Reading, reading behavior, didactic, strategy

    Effects of Feeding of Two Potentially Probiotic Preparations from Lactic Acid Bacteria on the Performance and Faecal Microflora of Broiler Chickens

    Get PDF
    The aim of this study was to evaluate the potential of two probiotic preparations, containing live lactic acid bacteria (Lactococcus lactis CECT 539 and Lactobacillus casei CECT 4043) and their products of fermentation (organic acids and bacteriocins), as a replacement for antibiotics in stimulating health and growth of broiler chickens. The effects of the supplementation of both preparations (with proven probiotic effect in weaned piglets) and an antibiotic (avilamycin) on body weight gain (BWG), feed intake (FI), feed consumption efficiency (FCE), relative intestinal weight, and intestinal microbiota counts were studied in 1-day posthatch chickens. The experiments were conducted with medium-growth Sasso X44 chickens housed in cages and with nutritional stressed Ross 308 broiler distributed in pens. Consumption of the different diets did not affect significantly the final coliform counts in Sasso X44 chickens. However, counts of lactic acid bacteria and mesophilic microorganisms were higher in the animals receiving the two probiotic preparations (P < 0.05). In the second experiment, although no differences in BWG were observed between treatments, Ross 308 broilers receiving the probiotic Lactobacillus preparation exhibited the lowest FCE values and were considered the most efficient at converting feed into live weight

    Photocatalytic degradation of endocrine disruptor compounds under simulated solar light

    Get PDF
    Nanostructured titanium materials with high UV-visible activity were synthesized in the collaborative project Clean Water FP7. In this study, the efficiency of some of these catalysts to degrade endocrine disruptor compounds, using bisphenol A as the model compound, was evaluated. Titanium dioxide P25 (AEROXIDE® TiO2, Evonik Degussa) was used as the reference. The photocatalytic degradation was carried out under the UV part of a simulated solar light (280–400 nm) and under the full spectrum of a simulated solar light (200 nm-30 μm). Catalytic efficiency was assessed using several indicators such as the conversion yield, the mineralization yield, by-product formation and the endocrine disruption effect of by-products. The new synthesized catalysts exhibited a significant degradation of bisphenol A, with the so-called ECT-1023t being the most efficient. The intermediates formed during photocatalytic degradation experiments with ECT-1023t as catalyst were monitored and identified. The estrogenic effect of the intermediates was also evaluated in vivo using a ChgH-GFP transgenic medaka line. The results obtained show that the formation of intermediates is related to the nature of the catalyst and depends on the experimental conditions. Moreover, under simulated UV, in contrast with the results obtained using P25, the by-products formed with ECT-1023t as catalyst do not present an estrogenic effect.We are grateful for the funding of the European Commission through the Clean Water Project which is a Collaborative Project (Grant Agreement number 227017) co-funded by the Research DG of the European Commission within the joint RTD activities of the Environment and NMP Thematic Prioritie

    Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil

    Full text link
    [EN] This paper reports the development of biodegradable active packaging films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by the incorporation of alpha- and gamma-cyclodextrins (alpha-CD and gamma-CDs) containing oregano essential oil (OEO). Herein, both the kneading method (KM) and freeze-drying method (FDM) were first explored for the preparation of alpha-CD:OEO and gamma-CD:OEO inclusion complexes at host:guest ratios of 80:20 wt/wt and 85:15 wt/wt, respectively. The results showed that KM was the most efficient method for the encapsulation of OEO in the CDs cavity in terms of simplicity and rapidity, while it was also yielded the inclusion complexes with the highest antimicrobial and antioxidant performance. The alpha-CD:OEO and gamma-CD:OEO inclusion complexes obtained by KM were thereafter incorporated at 10, 15, 20, 25, and 30 wt% into PHBV fibres by electrospinning and annealed at 160 degrees C to produce contact transparent films. It was observed that the optimal concentration of alpha-CD:OEO and gamma-CD:OEO inclusion complexes for homogeneous and continuous film formation was attained at contents of 15 and 25 wt%, respectively. Higher antimicrobial and antioxidant activities were obtained for the gamma-CD:OEO inclusion complexes due to the greater encapsulation efficiency of OEO in gamma-CD, resulting in PHBV films with good performance for up to 15 days. This aspect, together with their improved thermal stability and mechanical strength, give interesting applications to these biopolymer films in the design of active-releasing packaging materials to maintain the physical, chemical, and microbiological characteristics of food products.The authors would like to thank the Unidad Asociada IATA-UJI "Plastics Technology" and the Spanish Ministry of Science and Innovation (MICI) project RTI 2018-097249-B-C21 and the H2020 EU project YPACK (reference number 773872) for funding. Kelly J. Figueroa-Lopez and S. Torres-Giner are recipients of a Grisolia scholarship (Ref. 0001426013N810001A201) of the Valencian Government (GVA) and a Juan de la Cierva-Incorporaci.on contract (IJCI-2016-29675) from MICI, respectively.Figueroa-Lopez, K.; Enescu, D.; Torres-Giner, S.; Cabedo, L.; Cerqueira, M.; Pastrana, L.; Fuciños, P.... (2020). Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil. Food Hydrocolloids. 108:1-18. https://doi.org/10.1016/j.foodhyd.2020.106013S118108Ashori, A., Jonoobi, M., Ayrilmis, N., Shahreki, A., & Fashapoyeh, M. A. (2019). Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements. International Journal of Biological Macromolecules, 136, 1119-1124. doi:10.1016/j.ijbiomac.2019.06.181Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., & Uyar, T. (2017). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chemistry, 233, 117-124. doi:10.1016/j.foodchem.2017.04.095Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106Beirão-da-Costa, S., Duarte, C., Bourbon, A. I., Pinheiro, A. C., Januário, M. I. N., Vicente, A. A., … Delgadillo, I. (2013). Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids, 33(2), 199-206. doi:10.1016/j.foodhyd.2013.03.009Bilia, A. R., Guccione, C., Isacchi, B., Righeschi, C., Firenzuoli, F., & Bergonzi, M. C. (2014). Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach. Evidence-Based Complementary and Alternative Medicine, 2014, 1-14. doi:10.1155/2014/651593Busolo, M. A., & Lagaron, J. M. (2015). Antioxidant polyethylene films based on a resveratrol containing Clay of Interest in Food Packaging Applications. Food Packaging and Shelf Life, 6, 30-41. doi:10.1016/j.fpsl.2015.08.004Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., Melville, C. C., Della Vechia, J. F., de Andrade, D. J., & Fraceto, L. F. (2018). Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Scientific Reports, 8(1). doi:10.1038/s41598-018-20602-yCeccato, M., Lo Nostro, P., Rossi, C., Bonechi, C., Donati, A., & Baglioni, P. (1997). Molecular Dynamics of Novel α-Cyclodextrin Adducts Studied by 13C-NMR Relaxation. The Journal of Physical Chemistry B, 101(26), 5094-5099. doi:10.1021/jp9638447Celebioglu, A., Umu, O. C. O., Tekinay, T., & Uyar, T. (2014). Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids and Surfaces B: Biointerfaces, 116, 612-619. doi:10.1016/j.colsurfb.2013.10.029Crini, G. (2014). Review: A History of Cyclodextrins. Chemical Reviews, 114(21), 10940-10975. doi:10.1021/cr500081pDas, S., & Subuddhi, U. (2015). Studies on the complexation of diclofenac sodium with β–cyclodextrin: Influence of method of preparation. Journal of Molecular Structure, 1099, 482-489. doi:10.1016/j.molstruc.2015.07.001De Vincenzi, M., Stammati, A., De Vincenzi, A., & Silano, M. (2004). Constituents of aromatic plants: carvacrol. Fitoterapia, 75(7-8), 801-804. doi:10.1016/j.fitote.2004.05.002Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39(9), 1033-1046. doi:10.1016/s0032-9592(03)00258-9Dietrich, K., Dumont, M.-J., Del Rio, L. F., & Orsat, V. (2019). Sustainable PHA production in integrated lignocellulose biorefineries. New Biotechnology, 49, 161-168. doi:10.1016/j.nbt.2018.11.004Figueroa-Lopez, K., Andrade-Mahecha, M., & Torres-Vargas, O. (2018). Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules, 23(1), 212. doi:10.3390/molecules23010212Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144Gao, N., Yang, J., Wu, Y., Yue, J., Cao, G., Zhang, A., … Feng, Z. (2019). β-Cyclodextrin functionalized coaxially electrospun poly(vinylidene fluoride) @ polystyrene membranes with higher mechanical performance for efficient removal of phenolphthalein. Reactive and Functional Polymers, 141, 100-111. doi:10.1016/j.reactfunctpolym.2019.05.001Gaur, S., Lopez, E. C., Ojha, A., & Andrade, J. E. (2018). Functionalization of Lipid‐Based Nutrient Supplement with β‐Cyclodextrin Inclusions of Oregano Essential Oil. Journal of Food Science, 83(6), 1748-1756. doi:10.1111/1750-3841.14178Giordano, F., Novak, C., & Moyano, J. R. (2001). Thermal analysis of cyclodextrins and their inclusion compounds. Thermochimica Acta, 380(2), 123-151. doi:10.1016/s0040-6031(01)00665-7Guimarães, A. G., Oliveira, M. A., Alves, R. dos S., Menezes, P. dos P., Serafini, M. R., de Souza Araújo, A. A., … Quintans Júnior, L. J. (2015). Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chemico-Biological Interactions, 227, 69-76. doi:10.1016/j.cbi.2014.12.020Haloci, E., Toska, V., Shkreli, R., Goci, E., Vertuani, S., & Manfredini, S. (2014). Encapsulation of Satureja montana essential oil in β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 80(1-2), 147-153. doi:10.1007/s10847-014-0437-zHarada, A., & Kamachi, M. (1990). Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules, 23(10), 2821-2823. doi:10.1021/ma00212a039Harada, A., Li, J., & Kamachi, M. (1992). The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature, 356(6367), 325-327. doi:10.1038/356325a0Harada, A., Li, J., & Kamachi, M. (1993). Synthesis of a tubular polymer from threaded cyclodextrins. Nature, 364(6437), 516-518. doi:10.1038/364516a0Harada, A., Suzuki, S., Okada, M., & Kamachi, M. (1996). Preparation and Characterization of Inclusion Complexes of Polyisobutylene with Cyclodextrins. Macromolecules, 29(17), 5611-5614. doi:10.1021/ma960428bHedges, A. R. (1998). Industrial Applications of Cyclodextrins. Chemical Reviews, 98(5), 2035-2044. doi:10.1021/cr970014wHill, L. E., Gomes, C., & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT - Food Science and Technology, 51(1), 86-93. doi:10.1016/j.lwt.2012.11.011Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50-56. doi:10.1016/j.carbpol.2013.02.031Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19. doi:10.1016/j.foodhyd.2013.08.030Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., … Yao, W. (2019). Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science & Technology, 92, 22-32. doi:10.1016/j.tifs.2019.08.005Kaolaor, A., Phunpee, S., Ruktanonchai, U. R., & Suwantong, O. (2019). Effects of β-cyclodextrin complexation of curcumin and quaternization of chitosan on the properties of the blend films for use as wound dressings. Journal of Polymer Research, 26(2). doi:10.1007/s10965-019-1703-yKayaci, F., & Uyar, T. (2012). Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food Chemistry, 133(3), 641-649. doi:10.1016/j.foodchem.2012.01.040Liang, H., Yuan, Q., Vriesekoop, F., & Lv, F. (2012). Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food Chemistry, 135(3), 1020-1027. doi:10.1016/j.foodchem.2012.05.054Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719Loftsson, T., & Brewster, M. E. (1996). Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. Journal of Pharmaceutical Sciences, 85(10), 1017-1025. doi:10.1021/js950534bLu, Z., Cheng, B., Hu, Y., Zhang, Y., & Zou, G. (2009). Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chemistry, 113(1), 17-20. doi:10.1016/j.foodchem.2008.04.042Marques, H. M. C. (2010). A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour and Fragrance Journal, 25(5), 313-326. doi:10.1002/ffj.2019Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227NAKANISHI, K., MASUKAWA, T., NADAI, T., YOSHII, K., OKADA, S., & MIYAJIMA, K. (1997). Sustained Release of Flufenamic Acid from a Drug-Triacetyl-.BETA.-Cyclodextrin Complex. Biological and Pharmaceutical Bulletin, 20(1), 66-70. doi:10.1248/bpb.20.66Owen, L., & Laird, K. (2018). Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance. Critical Reviews in Microbiology, 44(4), 414-435. doi:10.1080/1040841x.2018.1423616Ozdemir, N., Pola, C. C., Teixeira, B. N., Hill, L. E., Bayrak, A., & Gomes, C. L. (2018). Preparation of black pepper oleoresin inclusion complexes based on beta-cyclodextrin for antioxidant and antimicrobial delivery applications using kneading and freeze drying methods: A comparative study. LWT, 91, 439-445. doi:10.1016/j.lwt.2018.01.046Ponce Cevallos, P. A., Buera, M. P., & Elizalde, B. E. (2010). Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability. Journal of Food Engineering, 99(1), 70-75. doi:10.1016/j.jfoodeng.2010.01.039Prakash, B., Kedia, A., Mishra, P. K., & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities – Potentials and challenges. Food Control, 47, 381-391. doi:10.1016/j.foodcont.2014.07.023Prakash, B., Singh, P., Kedia, A., & Dubey, N. K. (2012). Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Research International, 49(1), 201-208. doi:10.1016/j.foodres.2012.08.020Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2Rakmai, J., Cheirsilp, B., Mejuto, J. C., Torrado-Agrasar, A., & Simal-Gándara, J. (2017). Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids, 65, 157-164. doi:10.1016/j.foodhyd.2016.11.014Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250-264. doi:10.1016/j.indcrop.2014.05.055Ribeiro-Santos, R., Andrade, M., Melo, N. R. de, & Sanches-Silva, A. (2017). Use of essential oils in active food packaging: Recent advances and future trends. Trends in Food Science & Technology, 61, 132-140. doi:10.1016/j.tifs.2016.11.021Rusa, C. C., Bullions, T. A., Fox, J., Porbeni, F. E., Wang, X., & Tonelli, A. E. (2002). Inclusion Compound Formation with a New Columnar Cyclodextrin Host. Langmuir, 18(25), 10016-10023. doi:10.1021/la0262452Sagiri, S. S., Anis, A., & Pal, K. (2015). Review on Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications. Polymer-Plastics Technology and Engineering, 55(3), 291-311. doi:10.1080/03602559.2015.1050521Santos, E. H., Kamimura, J. A., Hill, L. E., & Gomes, C. L. (2015). Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT - Food Science and Technology, 60(1), 583-592. doi:10.1016/j.lwt.2014.08.046Saokham, P., Muankaew, C., Jansook, P., & Loftsson, T. (2018). Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules, 23(5), 1161. doi:10.3390/molecules23051161Seo, E.-J., Min, S.-G., & Choi, M.-J. (2010). Release characteristics of freeze-dried eugenol encapsulated withβ-cyclodextrin by molecular inclusion method. Journal of Microencapsulation, 27(6), 496-505. doi:10.3109/02652041003681398Shan, L., Tao, E., Meng, Q., Hou, W., Liu, K., Shang, H., … Zhang, W. (2016). Formulation, optimization, and pharmacodynamic evaluation of chitosan/phospholipid/&beta;-cyclodextrin microspheres. Drug Design, Development and Therapy, 417. doi:10.2147/dddt.s97982Sharifi-Rad, J., Sureda, A., Tenore, G., Daglia, M., Sharifi-Rad, M., Valussi, M., … Iriti, M. (2017). Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules, 22(1), 70. doi:10.3390/molecules22010070Sherry, M., Charcosset, C., Fessi, H., & Greige-Gerges, H. (2013). Essential oils encapsulated in liposomes: a review. Journal of Liposome Research, 23(4), 268-275. doi:10.3109/08982104.2013.819888Shin, J., Kathuria, A., & Lee, Y. S. (2019). Effect of hydrophilic and hydrophobic cyclodextrins on the release of encapsulated allyl isothiocyanate (AITC) and their potential application for plastic film extrusion. Journal of Applied Polymer Science, 136(42), 48137. doi:10.1002/app.48137Szejtli, J. (1998). Introduction and General Overview of Cyclodextrin Chemistry. Chemical Reviews, 98(5), 1743-1754. doi:10.1021/cr970022cTopuz, F., & Uyar, T. (2019). Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite. Composites Communications, 12, 33-38. doi:10.1016/j.coco.2018.12.002Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393Wang, C. X., & Chen, S. L. (2005). Fragrance-release Property of β-Cyclodextrin Inclusion Compounds and their Application in Aromatherapy. Journal of Industrial Textiles, 34(3), 157-166. doi:10.1177/1528083705049050Yildiz, Z. I., Celebioglu, A., Kilic, M. E., Durgun, E., & Uyar, T. (2018). Menthol/cyclodextrin inclusion complex nanofibers: Enhanced water-solubility and high-temperature stability of menthol. Journal of Food Engineering, 224, 27-36. doi:10.1016/j.jfoodeng.2017.12.020Zainuddin, S., Kamrul Hasan, S. M., Loeven, D., & Hosur, M. (2019). Mechanical, Fire Retardant, Water Absorption and Soil Biodegradation Properties of Poly(3-hydroxy-butyrate-co-3-valerate) Nanofilms. Journal of Polymers and the Environment, 27(10), 2292-2304. doi:10.1007/s10924-019-01517-9Zhang, J., Shishatskaya, E. I., Volova, T. G., da Silva, L. F., & Chen, G.-Q. (2018). Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C, 86, 144-150. doi:10.1016/j.msec.2017.12.035Zhang, M., Wang, J., Lyu, Y., Fitriyanti, M., Hou, H., Jin, Z., … Narsimhan, G. (2018). Understanding the antimicrobial activity of water soluble γ-cyclodextrin/alamethicin complex. Colloids and Surfaces B: Biointerfaces, 172, 451-458. doi:10.1016/j.colsurfb.2018.08.06

    Sorting live stem cells based on Sox2 mRNA expression.

    Get PDF
    PMCID: PMC3507951This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner

    A human monoclonal antibody that specifically binds and inhibits the staphylococcal complement inhibitor protein SCIN

    Get PDF
    Staphylococcus aureus is a serious public health burden causing a wide variety of infections. Earlier detection of such infections could result in faster and more directed therapies that also prevent resistance development. Human monoclonal antibodies (humAbs) are promising tools for diagnosis and therapy owing to their relatively straightforward synthesis, long history of safe clinical use and high target specificity. Here we show that the humAb 6D4, which was obtained from a random screen of B-cells producing antibodies that bind to whole cells of S. aureus, targets the staphylococcal complement inhibitor (SCIN). The epitope recognized by 6D4 was localized to residues 26 to 36 in the N-terminus of SCIN, which overlap with the active site. Accordingly, 6D4 can inhibit SCIN activity as demonstrated through the analysis of C3b deposition on S. aureus cells and complement-induced lysis of rabbit erythrocytes. Importantly, while SCIN is generally regarded as a secreted virulence factor, 6D4 allowed detection of strongly increased SCIN binding to S. aureus cells upon exposure to human serum, relating to the known binding of SCIN to C3 convertases deposited on the staphylococcal cell surface. Lastly, we show that labeling of humAb 6D4 with a near-infrared fluorophore allows one-step detection of SCIN-producing S. aureus cells. Together, our findings show that the newly described humAb 6D4 specifically recognizes S. aureus SCIN, which can potentially be used for detection of human serum-incubated S. aureus strains expressing SCIN
    corecore