4,085 research outputs found
Monotonic Prefix Consistency in Distributed Systems
We study the issue of data consistency in distributed systems. Specifically,
we consider a distributed system that replicates its data at multiple sites,
which is prone to partitions, and which is assumed to be available (in the
sense that queries are always eventually answered). In such a setting, strong
consistency, where all replicas of the system apply synchronously every
operation, is not possible to implement. However, many weaker consistency
criteria that allow a greater number of behaviors than strong consistency, are
implementable in available distributed systems. We focus on determining the
strongest consistency criterion that can be implemented in a convergent and
available distributed system that tolerates partitions. We focus on objects
where the set of operations can be split into updates and queries. We show that
no criterion stronger than Monotonic Prefix Consistency (MPC) can be
implemented.Comment: Submitted pape
Secret-Sharing for NP
A computational secret-sharing scheme is a method that enables a dealer, that
has a secret, to distribute this secret among a set of parties such that a
"qualified" subset of parties can efficiently reconstruct the secret while any
"unqualified" subset of parties cannot efficiently learn anything about the
secret. The collection of "qualified" subsets is defined by a Boolean function.
It has been a major open problem to understand which (monotone) functions can
be realized by a computational secret-sharing schemes. Yao suggested a method
for secret-sharing for any function that has a polynomial-size monotone circuit
(a class which is strictly smaller than the class of monotone functions in P).
Around 1990 Rudich raised the possibility of obtaining secret-sharing for all
monotone functions in NP: In order to reconstruct the secret a set of parties
must be "qualified" and provide a witness attesting to this fact.
Recently, Garg et al. (STOC 2013) put forward the concept of witness
encryption, where the goal is to encrypt a message relative to a statement "x
in L" for a language L in NP such that anyone holding a witness to the
statement can decrypt the message, however, if x is not in L, then it is
computationally hard to decrypt. Garg et al. showed how to construct several
cryptographic primitives from witness encryption and gave a candidate
construction.
One can show that computational secret-sharing implies witness encryption for
the same language. Our main result is the converse: we give a construction of a
computational secret-sharing scheme for any monotone function in NP assuming
witness encryption for NP and one-way functions. As a consequence we get a
completeness theorem for secret-sharing: computational secret-sharing scheme
for any single monotone NP-complete function implies a computational
secret-sharing scheme for every monotone function in NP
Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis
All eukaryotic genomes are packaged as chromatin, with DNA interlaced with both regularly patterned nucleosomes and sub-nucleosomal-sized protein structures such as mobile and labile transcription factors (TF) and initiation complexes, together forming a dynamic chromatin landscape. Whilst details of nucleosome position in Arabidopsis have been previously analysed, there is less understanding of their relationship to more dynamic sub-nucleosomal particles (subNSPs) defined as protected regions shorter than the ~150bp typical of nucleosomes. The genome-wide profile of these subNSPs has not been previously analysed in plants and this study investigates the relationship of dynamic bound particles with transcriptional control. Here we combine differential micrococcal nuclease (MNase) digestion and a modified paired-end sequencing protocol to reveal the chromatin structure landscape of Arabidopsis cells across a wide particle size range. Linking this data to RNAseq expression analysis provides detailed insight into the relationship of identified DNA-bound particles with transcriptional activity. The use of differential digestion reveals sensitive positions, including a labile -1 nucleosome positioned upstream of the transcription start site (TSS) of active genes. We investigated the response of the chromatin landscape to changes in environmental conditions using light and dark growth, given the large transcriptional changes resulting from this simple alteration. The resulting shifts in the suites of expressed and repressed genes show little correspondence to changes in nucleosome positioning, but led to significant alterations in the profile of subNSPs upstream of TSS both globally and locally. We examined previously mapped positions for the TFs PIF3, PIF4 and CCA1, which regulate light responses, and found that changes in subNSPs co-localized with these binding sites. This small particle structure is detected only under low levels of MNase digestion and is lost on more complete digestion of chromatin to nucleosomes. We conclude that wide-spectrum analysis of the Arabidopsis genome by differential MNase digestion allows detection of sensitive features hereto obscured, and the comparisons between genome-wide subNSP profiles reveals dynamic changes in their distribution, particularly at distinct genomic locations (i.e. 5’UTRs). The method here employed allows insight into the complex influence of genetic and extrinsic factors in modifying the sub-nucleosomal landscape in association with transcriptional changes
Revisiting Deniability in Quantum Key Exchange via Covert Communication and Entanglement Distillation
We revisit the notion of deniability in quantum key exchange (QKE), a topic
that remains largely unexplored. In the only work on this subject by Donald
Beaver, it is argued that QKE is not necessarily deniable due to an
eavesdropping attack that limits key equivocation. We provide more insight into
the nature of this attack and how it extends to other constructions such as QKE
obtained from uncloneable encryption. We then adopt the framework for quantum
authenticated key exchange, developed by Mosca et al., and extend it to
introduce the notion of coercer-deniable QKE, formalized in terms of the
indistinguishability of real and fake coercer views. Next, we apply results
from a recent work by Arrazola and Scarani on covert quantum communication to
establish a connection between covert QKE and deniability. We propose DC-QKE, a
simple deniable covert QKE protocol, and prove its deniability via a reduction
to the security of covert QKE. Finally, we consider how entanglement
distillation can be used to enable information-theoretically deniable protocols
for QKE and tasks beyond key exchange.Comment: 16 pages, published in the proceedings of NordSec 201
Wind-tunnel study of the effects of propeller operation and flap deflection on the pitching moments and elevator hinge moments of a single-engine pursuit-type airplane
Bankruptcy
The authors analyze developments in bankruptcy, including decisions involving the rights of secured parties and lienors, jurisdiction of the bankruptcy courts, valuation of security, discharge, preferences and newsman\u27s and attorney-client privileges in bankruptcy. The article also reports recent decisions interpreting the Uniform Commercial Code as it pertains to bankruptcy. Included are a number of bankruptcy issues which recently have been adjudicated for the first time
- …
