NATIONAL ADVISORY COMMITIEE FOR AERONAUTICS JPL LIBRARY

 WARTIME REPORT

ORIGINALLY ISSUED

July 1942 as
Advance Restricted Report

WTIND-TUNNEL STUDY OF THE EFFECTS OF PROPELLER OPERATION
aND FLAP DEFLECTION ON THE PITCHING MOMENTS AND
ELEVATOR HINGE MOMENTS OF A SINGLE-ENGINE
PURSUIT-TYPE AIRPLANE
By H. R. Pass

Langley Memorial Aeronautical Laboratory Lengley Field, Va.

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapld distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

NATIONAL ADTISORY COMMITTEE FOR AERONAUTICS

ADVANCE RESTRICTED REPORT

WIND-TUNNEL STUDY OF THE EFPECTS OF PROPBLLER OPRRATIOS
AND FLAP DEFLECTION ON TEE PITCAING MOMENTS AND
ELEVATOR HINGE MORRNTS OF A SINGLE-ENGINE
PURSUIT-TYPE AIRPLANE
Ey R. R. Pass

SUMMAZY

A mock-up of a pursuit airplene hes been tested in the NACA full-scale wind tunnel and the effects of propeller operation and flap deflection on the aerodynamic cheracteristics of the wing-fuselage combination and of the horizontal tail have been determined. The results of these tests havo been compared vith the results of previous $t \in s t s$ and with available theories and, in general, satisfactory comparisons heve been obtaired. These results have also bean ised to develop empirical procedures. for detormining the effect of propoller operation on the lift and on the pitching moments of a flapped wing and to evaluato empirical factors for calculating tho downesh angles at the tail with tho propellcr oporating. The general applicadility of these empiricisms has not been deturmined. The elevetor hinge-moment characteristics have also beon detormined from tosts on the mock-up and indicat the inadequacy of evailablo data on the hingomomont peramoters. The procachre for calculating stick forces from wind-tinnol deta hes becn outlined.

- INMRODUCTION

Extensive longitudinel-stability and control tests have been conductei in the NACA full-scale vind tunnel on a mock-up of a pursinit airplane. The results have been analyzed to evaluate the verious factors that effect the pitching moments of the airplane and the stick forces. A comparison of these results with the results of previous
work indicates the limitations of available information for preliminary design purposes.

The study is considered in four parts. In part I, the effect of the fuselage on the wing characteristics is considered. Part II is a study of the effect of the tail on the pitching moinent and includes an estimate of the isolated tail characteristics and of the effective downwash and velocity acting on the tail. Surveys of air flow in the region of the tail are also includod. The results of parts I and II are combined in part III in which the pitching-moment curvos for the complete airplane are developed. Part IV deals with the elevator freefloating and stick-force cheracteristics of the airplane and indicates the interdepondence of the various factors previously considered. Tho effects of flap doflection and propeller operation aro considered in all sections.

SYMEOLS

W	gross weight	
$c_{\text {I }}$	lift cocfficient	
C_{D}	drag coofficient	
C_{N}	normal-force coofficiont	
M	pitching moment	
$\mathrm{C}_{\text {mi }}$	pitching-moment coofficient	
$c_{h_{e}}$	olevator hinge-moment coofficient	$\left(\frac{\text { hinge }{ }^{\text {moment }} \text { (}}{q S_{c} \bar{c}_{e}}\right)$
${ }^{\circ}$	power coefficient $\left(\frac{P}{\rho n^{3} D^{5}}\right)$	-
${ }^{\mathrm{c}} \mathrm{m}$	section pitching-moment coofficient	
${ }^{\circ} 1$	section lift coefficient	
P	power input to propeller	\cdots
T	axial propeller thrust	

F	stick force
D	propiller aiameter
V	airspeed
β	propeller blede angle
n	propeller rotational epeed, revolutions per second; also, distance from center of gravity forward to aterodyamic center of wing-fuselage combination (measured parallel to thrust line)
n	Propulsite efitciency
ρ	air density
T_{c}	thrust coeffioiont $\left(\frac{T}{P V^{2}} J^{2}\right)$
${ }^{C}$ T	absolute thrust coefficient ($\left.\frac{T}{\rho n^{2} D^{4}}\right)$
q	local dyncmio pressure ($\frac{1}{\text { bp }} \mathrm{V}^{2}$)
90	free-stream aynamtc pressure
(a/90) eff	effective dynamic-pressure factor, ratio of measured $d C_{m} / d \delta e$ to value corrosponcing to free-stream dynamic prescure at rail
$\left(a / q_{0}\right)_{a v}$	ratio of averace dynamic pressure at tail, as found from air-flow surveys, to freestreom dynamic pressure; the average is weighted according to chord
$\left(q / q_{0}\right)^{\text {a }}$ a	ratio of arithmetical-average dynamic pressure at tail, as found from air-flow surveys, to freo-stream dynamic pressure
ϵ	local downwesh ansle
$\epsilon_{\text {eff }}$	effective downash angle at tail, es found by comparison of pitching moments with various tail settings and without tail

$\epsilon_{E V}$	average downwah engle at tail, as found from nirfflow surveys; the nverage is weightod according to both chord and locel Cynamic pressure
Eae	the arithmetical average of downwash angle across tail, es found from nir-flow surveys
s	velocity-incramont factor beck of propeller disk
θ_{0}	İft-eurve slope for ̇nfinite aspect ratio
S	nron
b	span
0	chord
$\overline{\mathrm{c}}$	moan geometric chord
\imath_{1}	distence from propeller disk to center of gravity of airplnne (mensured parallel to thrust line)
?	```distanco srom conter uf eravity to olevator hinge line (neasured parallel to thrust line)```
${ }_{3}$	distance from trailing edge of root chord to elevator hinge line (measured parallel to thrust line)
α_{T}	angle of tttack of thrust axis
a_{t}	angle of attack of tail
i_{t}	ange of tail setting, relative to thrust aris
8	control-surface deflection
T	relative elevator effectiveness factor
λ	empirical factor in formula for detormining increase in lift due to slipstream velocity
λ_{t}	theoretical fastor usod in determining increase in tail lift due toslipetroam

q_{s}	stick length
u, v	hinge-moment peramotors
$\Delta \epsilon_{1}, \Delta \epsilon_{2}$	ompirical corrections used to obtain effective downwash engles at tail from calculated values
Δ	denotes chengo, usually due to propeller operetion
Subscripts:	
0	propollor-ramoved cordition
p	propellor-oporating condition
P	propeller
w	wing
f	flop
$\mathrm{f}+\mathrm{w}$	wing-fuselogo combination
f w	flapped wing
t	horizontal taic
A	airpleno
e	elevator, back of hinge
1	portion immorsod in slipstream
is	isoleted
8	slipstrenm
b	balance
$t r$	$t r i m$
$\pm f$	froefloeting
e.c.	aerodynamic center
cal	calculated

TESTS

Tho tests were mode in the NACA full-scale wind tunnel (referonce 1). The usual aind-tunci corrections to the angle of attack and the drag, obtainod from refercnce 2, and the additioncl correction due to the llolocking effectll (reference 3) have becil applide to the experimontel data. The pitching moments have not bean corrected for the wind-tunnel interference on tie downash at the tail (reference 4); the interference was, however, considered in the discussion of the results.

The mock-up represented a single-engine, tractor-type, low-miduing airplane design (fis. 1). All parts of the cooling system and the carburetor scoop were removed for the tests. The elevator was controllable from the cockpit durine the runs. The wing flap was of the slotted type and was deflected 40° for all flap-deflected conditions. A 25 -horsepower electric motor installed in the mock-up oporated a Curtiss electric controllablepitch propeller whose blade-anele sotting could be controlled and detcrmined during the runs.

The force tests consisted of moasuremerts of lift, drag, end pitcling momont on the mock-up without the tail surfaces and with the tail surfaces vith varions settings of the stabilizer and the elevator. For the olevatoroffectiveness and hinge-moment tests an operator in the cockpit manipulated the elevator control stick and, using a conventional NACA control-foree indicator, mesured the stick forces. All tosts included the effects of flap deflection and propeller operation. The propeller characteristics (fig. 2) were detcrined from propulsiveefficiency tests of the completo mock-up. Tho accuracy of the stabilizor and elevotor suttings vas estimated to be within $\pm 0.25^{\circ}$. In the analysis of the data, extensive cross fairing wes performed.

With the horizontal and vartical tails removed, airflow surteys wore made in the reaion of tho tail. The surveys ware made by means of a survey rack consisting of 15 pitch-yam tubes.

At each angle of attack the propeller was operated over a range of blado angles and advance-diameter ratios to obtain e range of thrust coefficients, A large range
of possible operating concitions was thereby covered; the greater part of the measurements, however, were made for conditions that approximated full-power operation of the mock-up as a typical pursuit airplene with 1000 brake horsepover (fig. 3). Propeller charts for a nearly similar propeller were used for the preliminary calculations. In order to obtain desired values of V / nd, the tunnel speed was varted botween 30 and 60 miles per hour.

As previously noted in reference 5 , it was found that the lift and the pitching moments wore relatively unaffected by reasonable variations of the propellor blade angle β if the same thrust coefficient T_{c} was maintained. The results of reference 5 indicate that, for the cases with fiaps retracted, the use of the Iff coefficient for the propeller-removed condition in determining the propeller-operating conditions is beroly satisfactory as e first approximation. For the cases with flaps deflected, however, this procedure is entirely unsatisfactory and the effect of propollor operction on the lift must be estimated. The propelleroperating conditions must then be recalculated, tho new lift coefficient being used.

I. WING-TUSBIAGE COMBITAMION

The addition of a fuselage to an isolated wing generally shifts the aerodynamic center forward (reference 6); the lift and the pitching moments for a conventional combination, hovever, are practically the same as those of the isolated ving (the pitching moments being taken about the corresponding aerodynamic centers). The wing and the fuselage can therefore bo convenicatly treated as a unit.

Iift-Curvo Slope

Lift, drag, and pitching-moment ourves for the tailless mock-up with flaps both retracted and deflected are presented in figure 4 , For the retractud flap the experimental slope of the lift curvo is 0.071 per degree. The slope for the isolated wing as calculated by the methods of reference 7, estimated section charecteristics being used, is 0.073 por degree. The results of previous tests of similar wing-fuselsge combinations (reference 6)
also show practically negligible effect of the fuselage on the slope of the wing lift curve.

Tho experimentel slope of the lift curve for the cose with flaps defiected is 0.072 per degree. Reference 8 also indicates only a slight change, in generel, in the slope of the lift curve due to flap deflection.

Aerodynamic-Center Location

The experimental aorodynamic-center locations have been determined for the wing-fuselege combinetion from ficure 4 following the methods of reference 9.

Betracted figns. With the fleps retracted the aerodynemic center is 0.32 foot in front of and 0.89 foot below the center of gravity. The calculated location for the wing alono, by reference 7 , is 0.10 foot in front of the center of erevity. The forward shift of the aorodynamic center caused by the fuselage is, therefore, $\Delta n=0.040 \bar{c}_{w}$, which is in approximate agreement with the experimontal results of reference 6 . Tiis value is also in excellent agreemont with the theoretical value of $0.043 \mathrm{C}_{W}$ for Δn calculated from the formulas given in reforcnoe 10.

The vertical location of the aerodynamic center is primarily a function of the dreg cheracteriatics of the mock-up.

Daflected flepse The position of the aerodynamic center for the wing-fugelego combination with flaps deflected is 0.60 foot in front of and 1.55 feet below the center of grovity. This position is considerably formard of the locaticn with retractod flaps. The thoory of referonce 10 ineicatos thet pert of tijs additional forvard shift is probably due to an increpse in tho offect of the fusolage when the flaps are doflocted. The further downward movement of the aerodynamic eenter is due to the increased wing drag.

Effect of Fropeller Operation
Propeller opuration has two soperate effects on the lift and the pitching moments of the wing-fusolage combinetion. Tho first, designatcd the direct effect, erises
fron the forces on the popeller itself ond may be estimated from the results of tests of isolated propellers in yaw. The second, designated the slipstream effect, results from the increased volocity and the change in tho direction of the air flow at that part of the wine immersed in the siipstroam.

Retracted flaps.- The exporinental effect of propeller operation at various angles of attack and thrust conditions on the lift and on the pitching moments of the wing-fuselago combination with flaps retracted are presented in fisures 5 and 6, respectively. For comparison, the effects calculated by the methods of reference 5 are also shown in the figures. The agrement betweon the experimeatal and the calculated inft values is considered satisfactory. Tho agreemont for the valuos of pitching moment, howevor, although satisfactory, is not quite so good as for the lift values; the effects of the slipstroam on the wing and tho fuselage pitching moments, which have boon neglected in reforence 5 , may possibly account for part of the discropancy.

Deflected flaps.- The exporimental effects of propeller operation on the lift and the pitching moments of the wing-fugelage combination with deflected flaps are prosented in figures 7 and 8 , rospecitvely. The lift increments due to propeller operation are much larger than those obtained for the corresponaing condition with flaps retrected and the monounced diving moments indicate the considerable effect of the slif:tream on the wing pitching moments for the flap deflected. An attempt was made to apply tho metnods of reference 5 , heretofore used only for unflapped wings, to the present case, in order to indicate, if poseible, the applicability of these methods to flapped wings. It was found that, excert for the necessity of changing one parameter, the effect on the lift calculated by these methods was in reasonably satisfactory agreoment with the experimental results. These methods are summarized as follows:

The calculated lift values (fig, 7) were obtained.from

$$
\begin{equation*}
C_{I_{\mathrm{P}}}=C_{I_{0}}+\Delta C_{I_{\Gamma}}+\Delta O_{I_{W}} \tag{1}
\end{equation*}
$$

where $\Delta C_{I_{P}}$ was determined from the formulas and cherts of referance 5 and

$$
\begin{equation*}
\Delta C_{L_{w}}=\frac{b_{w i} \bar{c}_{w_{i}}}{S_{w}} s\left(\lambda c q_{0}-0.6 a_{0} \Delta \epsilon\right) \tag{2}
\end{equation*}
$$

This formula is similar to the corresponding formula (reference 5) for the plain wing; it was found, however, that λ should be 1.6 instead of 1.0 . According to reference ll, this value indicates the marked effect of the slipstream on the flapped-wing vortex system. Tho term $c_{q_{0}}$ is the estimoted local Ift coefficient, without slipstream, at the center of the flapped wing rather than the average lift cooficicient of the wing.

The calculated pitching-moment coofficients, presented in figure 8, have been obtained by consideration of the direct effect of the propellar forces and of the slipstream effoct on the wing pitching moment. The slipatream effect is much lareser than the direct effect of the propeller forces, as indicated in figure 9, in which tho direct effect has beon calculated from the formin of reforenco 5.

> The slipstream effoct on the wing pitching moment has boon taken as tho sum of two compononts. The first comfonont is due to the ving-lift incroment, which is assumed to act at the fusclage-wing aerodynonic center. The second, and larest, component is the increase in tho ectual pitching moment of the ving center sections about thoir aerodynomic conters. The sucond component is a function of the increase in velocity of the slipstream and of the immorsed wing area. If it is assumod that the section pitching-moment coefficionts are not affectod by the slipstroam, tilis incremont may be expressod as follows;

$$
\begin{equation*}
\Delta M_{\text {a.c. }}=c_{m_{a}} c .\left(q-q_{0}\right) s_{w_{i}} \bar{c}_{w_{i}} \tag{3}
\end{equation*}
$$

The factor $c_{n i a}, c$ is the pitching-moment coefficient of the flapped sections and is assumed constant ocross the flapped fortion $S_{f} w$ of the wing aren. It is closely approximeted, from the data for the propeller removed, es .

$$
c_{m_{a, c}}=\mathrm{c}_{\mathrm{m}_{\mathrm{s}}, c} \frac{\mathbf{s}_{\mathrm{w}}}{s_{f w}}
$$

Dividing equation (3) by $S_{w} q_{0} \bar{c}_{W}$ gives
$\Delta c_{m_{a}, c .}=c_{m_{a}}, \frac{\bar{c}_{W_{i}}}{\bar{c}_{W}} \frac{S_{W i}}{S_{W}}\left(q / q_{0}-I\right)=c_{m_{2}} \cdot c \cdot \frac{\bar{c}_{W_{i}}}{\bar{c}_{W}} \frac{S_{W_{i}}}{S_{W}} \frac{8}{\pi} T_{c}$

The final expression for the effect of the slipstream on the wing pitching moment is

$$
\begin{equation*}
\Delta C_{m_{W}}=c_{m_{0}} c \cdot \frac{\bar{c}_{V_{j}}}{\bar{c}_{W}} \frac{S_{W}}{S_{W}} \frac{8}{\pi} T_{c}+\frac{n}{\bar{c}_{W}} \Delta C_{I_{W}} \tag{5}
\end{equation*}
$$

If the effect of the slipstream on the fuselage pitching moment is neglectod, the total calculeted effect of propeller operation is given by

$$
\begin{equation*}
\Delta C_{m_{p}}=\Delta C_{m_{p}}+\Delta C_{m_{w}} \tag{6}
\end{equation*}
$$

The value of $\Delta C_{m_{p}}$ is, as for the condition with flap retracted, determined by the charts of referenco 5 .
II. TAIL CONTRIBUTION

The study of the toil contribution to the pitching moment of the airplene involves consideration of the isolatcd-tail paramoters end of the effective dynamic pressures and effective downwash engles at the tail. The cheracteristics of the isolatod teil, although an importent link in the anelysis, were not availablo, because no tests were mede of the tail alone. For purposes of this development, these characturistics wercestimetod by analysis of the data for tho propeller removed; methods that heve received some verification in previous studies (reference 12) were followad. Tho effective dynamic pressure at the tail is defined by the elevator effectivenoss $a C_{m} / d \delta_{e}$ and is equal to the average local dynamic prossure at the tail for the low-angle propeller-romoved conditions but, for the propeller-oporating conditions, it is loss then the average local dynamic pressure meinly becouso of the finite extent of the slipstream. The effective downwash angle is
dofined by the toil incidence for which the contribution of the tail to tho pitching moment is zero.

The data on tho olovator effectiveness was found to be in rood igreoment with tho theory of referonce 5 ; tho date on the downwnsh angles ojpenred, in goneral, to be less satisfactory and exhibitod some apparent inconsiatencies.

As a check on the over-all applicability of the various assumptions, empirical factors, and formulas, the total tail contribution to the ritching moment has been calculated with their aid and compared vith the experimental valuos.

Air-wlow Surveys

Some surveys of air flow in the rogion of the horizontal tail are presented in figures 10 to 25. With the propeller removed, the wing wake is considerebly below the horizontal tail but approaches it with inoreasing angle of attack. Tho fuselage boundary layer is clearly evikent in all cases. With the propeller operatinf, the Iimits of the slipstream and the effects of propeller rotation are readily detorminod. As is apparently characteristic for single-ungine ajrplanes (raferences 5 and 12), the slipstreari is not eircular. The marked increase in dynamic pressure, especially evident at the high angles of attack and the laree thrust coefficients, on the side of the downwerd-moving propellor blede hes been attributed to a shifting of the controid of the thrust, as discussed in reference lz. The very strong local downwash fields for the casc with flaps deflocted should be noted. It should also be observed that the dovnvash angles do not appreciably very with distance from the elevator hinge line.

All the surveys were evaluated to determine the averege dynamic pressure and the downwash of the air flow at the horizontal tail. The results are prosented in table I for the case with flaps retracted end in toble II for the case with fleps doflected. Two different types of averege are shovin in the tebles. Tho velues with tho subscript af are straight arithmetic avorages, defined as

$$
\begin{equation*}
\left(q / q_{0}\right)_{a a}=\frac{1}{b_{t}} \int_{-b_{t / a}}^{b_{t} / a}\left(q / q_{0}\right) d x \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{\varepsilon: a}=\frac{1}{b_{t}} \int_{-b_{t / z}}^{b_{t / 2}} \epsilon d x \tag{8}
\end{equation*}
$$

The values with the subscript av aro weighted averages, the losal dynamic pressure being weighted accordirg to the losal chord and the losal downash anglo boing woightod according to both loceil dynamic prossuro end local chord:

$$
\begin{gather*}
\left(q / q_{0}\right)_{a v}=\frac{1}{S_{t}} \int_{-b}^{b t / a}\left(q / q_{0}\right) c d x \tag{o}\\
\left.\epsilon_{a v}=\frac{1}{S_{t}\left(q / q_{0}\right)_{a v}} \int_{-b t / a}^{b t / a} a_{0}^{b}\right) c d x \tag{10}
\end{gather*}
$$

Tables I and II indicate that, in most instances, either metiod may be used to evaluate surveys. Veighted surveys have been used exclusively herein.

Iscinted-Tail Parameters

The isolated-tail parameters are the slope of the normal-force curte $\mathrm{dC}_{\mathrm{in}_{t}} / \mathrm{d} \alpha_{t}$ end the relative elevatoreffectiveness factor \quad. From tests with the propeller removed and rith the horizontal tail at various settings (fig. 2b) and from the formula

$$
\begin{equation*}
\frac{d o_{i v_{t}}}{d a_{t}}=\frac{\left(d c_{m} / d i_{t}\right)}{\left(q / q_{0}\right)_{0}} \frac{s_{w}}{s_{t}} \frac{\bar{c}_{w}}{i_{z}} \tag{II}
\end{equation*}
$$

the average experimental value for $d C_{t} / d_{t}$ was found to be 0.051. (Values of ($\left.q / \mathrm{q}_{0}\right)_{0}$. Were taken from surveys.) This value is in excellent agreonent with the value of 0.052 taken from figuro 21 of reference 14 . The average value of T, detarinined in tids roport by the retio
do $/ d \delta_{0} / d C_{m} / d i_{t}$, is 0.59 and $t s$ in excellent agreomont with the value of 0.53 obtained from figure 26 of reference 14.

It should be mentioned that previons comperisons of exporimental data with figures 21 and 26 of roferonco 14 have not always given such excellont agreoments as indicated in tho forogoing paragraph.

Elevator Effectiveness and Effective Dynamic Pressure
The experimental vaaiation of the elevator effectiveness with thrust coefficient with the flaps retracted and with the flaps deflected, is shoun in figures 27 and 28 , respectively. With the propeller removed, the elevator effectiveness is aproximately proportional to the averafe dynamic pressure at the tail; accordingly, for these conditions, the effective dynamic pressure approximately equals the average dynamic pressure; that is,

$$
\begin{equation*}
\left(d c_{m} / d \delta_{c}\right)_{0}=\left(d c_{N_{t}} / d a_{t}\right) \tau\left(q / c_{0}\right)_{0} \frac{S_{t}}{S_{W}} \frac{b_{2}}{\bar{C}_{W}} \tag{12}
\end{equation*}
$$

The proportionality no longer exists at tha higher thrust coefficients; for such conditions the affective dynamic pressure is lass then the average found from the surveys (tables I and II).

The difference is due mainly to the finite extent of the slipstream, which is taken into account in the following equation (similified from reference 5):

$$
\begin{equation*}
\therefore\left(\frac{d G_{m}}{d \delta_{0}}\right)_{p}=\left[\left(q / q_{0}\right)_{0}+\frac{b_{t} \bar{c}_{t_{i}}}{s_{t}} \lambda_{t} s_{s}\right]\left(\frac{d c_{m}}{d \delta_{0}}\right)_{i s} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\frac{d o_{m}}{d \delta_{c}}\right)_{i s}=\frac{\left(d c_{m} / d \delta_{0}\right)_{0}}{\left(q / q_{0}\right)_{0}} \tag{14}
\end{equation*}
$$

and $b_{t_{i}}$ is the span of the tail immersed in the slipstream, λ_{t} is a function of this immersion and may be
obtained fron refercnco b, and

$$
s_{s}=-1+\sqrt{1+G / \pi T_{c}}
$$

The effective dynanic pressure is thus given by the factor

$$
\begin{equation*}
\left(q_{/} q_{0}\right)_{e f f}=\left(q / q_{0}\right)_{0}+\frac{b_{t_{i}} \bar{c}_{t}}{s_{t}} \lambda_{t} s_{s} \tag{14a}
\end{equation*}
$$

For conparison with the experinental results, the elevator effectiveress was calculated by formula (13) for a range of conditions. Experimeatal values of ($\left.\mathrm{aC}_{\mathrm{m}} / \mathrm{d} \delta_{\mathrm{e}}\right)_{0}$ and (q / q_{0}) were used. For the condition fith the flaps retracted, the surveys and also the computations made by the methods of reference E indicate practically conplete immersion of the tail in the slipstream; accordingly, a value of 2 for λ_{t}, as indicated by the analysis of reference 15, was used for these cases. For the condition with the flaps deflected, the tail immersion was celculated to vary between 8.5 and 9.0 feet (also approyimately verifiod by the surveys), giving an avarage value of l. 64 for λ_{t} (íg. 41 of reference 5). The values of elevator offectiveness calculatad with thess two values of λ_{t} are shown, together with the experimontal rosults, in figures 27 and 28. Satisrectory agroemont is observed in both cases.

Downoash

As previonsly mentioned, the avorege downwash at the tail $\epsilon_{a v}$ has beon evaluated from the air-ilow surveys. For theso samo conditions, the effective downash $\epsilon_{0 f f}$ has been determined from figures 29 and 30 . The disagrcoment betwean theso two oxperimental downvesh anglos (shovn in figs. 31 and 32 and in tables I and II), ospocially in the lower angles, has been previously observed, notable in reference l2. The reasons are uncertain. The discreparcy, $\Delta \epsilon_{1}=\epsilon_{e f f}-\epsilon_{a v}, i: \operatorname{apparentiy}$ mainly a function of $\epsilon a v$ and is inbepondent of flap deflection and propeller operation, as shown in figure 33 . The curve of this tigure was used to supply a downosh-angle correc-
tion in the calculations to be given later; its general applicability, however, is obriously very questionable.
propeller removed, The average downwash angle of the air stream at the tail for all propeller-removed conditions hes beer calculated following the methods of refereaces 16 and 1%. The agreement between the calculated and the exporimentel averege downosh angles, irdicatod in figures 31 end 32 , is considered satisfactory, especially for retracted flaps. The calculated values includo the effects of wing twist (references 16 and 18) and tho wind-tunael corrections.

Proreller ongetine- Tho averege fownwash at the tail witr the propeller operatine has been calculated by the procedure given in reforence 5, Briefly,

$$
\begin{equation*}
\epsilon_{p}={ }_{w_{p}}+\epsilon_{\mathrm{F}}=\epsilon_{\mathrm{cal}} \tag{15}
\end{equation*}
$$

whore $\epsilon \mathcal{P}$ is obtained from charts in reference 5 and

This retion olamontary procedure gives fairly satisfactory chocrs with the averag exprimontal values (tobles I and II). A comporison of those reaults with the results of some recent British teuts indicates thet tho methods used give values of ϵ_{p} that, for the flap-deflectod conditions, are too large. Inasmuch as even small increments of downwash mey considerably affect the pitchine moment contributed by the tail, the discrepancy, $\Delta \varepsilon_{2}=\epsilon_{e v}-\epsilon_{c e l}$, was computed and plotted as a furction of $\epsilon_{c} e l$ in figure 34. Differont curves wore found for the cases with flaps deflected and with fleps retracted; propoller operation, however, had no definite effact. Without further exparimental stuay, tho genorel applicability of the sperific values given in figuro 34 is very questioneble.

III. COMFARISON OM CALCUIATED WITH

EXPERIMENTAL PIMCEING MOMENTS

Parts I And II havc summarlzed tho availoble mothods for coloulating tho pitching momonts of single-angino airplanos and have derivad the necessary parameters. Tho purposo of part III is to compere the pitchinemoments calculated by these mothods with experimental pitching momonts, in order to show the genaral applicability over the ontire rnnge oi oporating conditions of parameters dorivod as averago. values from purtiouler sets of tests. Tho comparison is first given for the contribution of tho fixed tioil (tnil-setting anglo, l. 2°; olevator anglo, 0°) to the pitching momont; tho compirison is thon oxtondod to the completo nock-v?.

Tail Contribution

The experimental toil contribution hes beon obteined as the difforence between pitching moments of the mock-up with tho tail attached sne with the tail removed. Tho calculated tail contribution is obtained by the following formula:

In equation (16)

$$
\begin{equation*}
\epsilon_{e f f}=\epsilon_{c a l}+\Delta \epsilon_{I}+\Delta \epsilon_{z} \tag{17}
\end{equation*}
$$

in which

$\epsilon_{\text {cal }}$	obtained from theory of reference 5
$\Delta \epsilon_{1}$ and $\Delta \epsilon_{2}$	given by figures 53 nnd 34
$d c_{N_{t}} / d \alpha_{t}=0.051$	
$\left(q / 0_{0}\right)_{0}$	values obtained from surveys
λ_{t}	1.64 for flaps extended and 2.0 for flaps retracted
$\mathbf{s}_{\mathbf{s}}=\sqrt{1}+\frac{8}{\pi} \mathrm{~T}_{\mathrm{C}}-$	I (zero for propeller removed)

The experimentol and calculated tail contributions for the condition with propelier removed are in satisfactory agreement (figs. 35 and 36). For comparative purposes, the tail contribution has also been calculated with experimental values of $\epsilon_{\text {eff }}$ and with $\epsilon_{\text {eff }}=\epsilon_{c \in 1}$ (figs. 35 and 36).

For the propeller-operating condition, the agreement between the experinental and the calculated values is not entirely satisfactory (Eigs. 37 and 38). Calculations of the tail contribution using experimental values or fepf (as obtained from oross plots of tables I and II) are given in figures 59 and 40 . These colculations indicate that a large part of the discropancy in figures 37 and 38 occurs because tho methods used in the ostimation of the downorsh ongles ero inadequate. The discreponcios at low thrust coefficionts for the hisher angles of attack may be, at least partly, attributed to the fact thet fow experimental data in this range wore teken and to the fact that at zero thrust, with the propeller operating, the conditions are not quite equivalunt to the conditions with the propeller removed. Calculated values of the tail contribution with $\epsilon_{e f f}=\epsilon_{c a l}$ are also included for comparative purposes in figuxes 39 and 40 .

Fitching-Moment Gurves for Complete Mock-Up
The experimental and the calculated pitching-moment curves for the complete mock-uj, are presented in figure 41 for the case with retracted ileps and in figure 42 for the case with deflected flaps. The calculated curves were obtained by the folloving formulas:

For retracted flaps,

$$
\begin{equation*}
\sigma_{m_{A}}=\sigma_{m}(f+w)_{o}+\sigma_{m_{p}}+\Delta \sigma_{m_{P}} \tag{18}
\end{equation*}
$$

For deflected flars,

$$
\begin{equation*}
c_{m_{A}}=c_{m}(f+w)_{0}+c_{m_{p}}+\Delta c_{m_{p}}+\Delta c_{m_{W}} \tag{19}
\end{equation*}
$$

Experimental values of $C_{\text {m }}(f+w)_{0}$ were taken from fís-
ure 4; the other terms have beon previously evaluated. As
rupectod, tho equament is not entymely atisfactory; tho disagreement is reerely duo to the accumulation of errors incured in astimating the various components.

The effect of the landing gear on the pitching momont is precentol in igure 43 . As tho landing gerer is located outside tide slipstream, the iincremunt of pitching momont due to the landing gear is probably unaffoctod by propeller operation.
IV. GIEVATOR HIAGE-MOMENT CHARACTERISTICS

The stick-force data have been analyzed with regard to the ining-morent parameters of the tail suriace, the elevator freefloating aigles, and the stick forces required to trim the eirplase.

Hinge-Moment Feramoters

Some typacal curves of the variation of hingemoment coefficient with angle of alevator deflection are shown in figure 44. These cooffioients aro based on froo-stroam dynamic pressure. Tro increase in slope et a value of $\boldsymbol{\delta}_{\mathrm{e}}$ of approxifately $x 8^{0}$ occurs for all conditions and is probably due to the rrojection of the luading edge of the elevator, The following analysis applies only to elevator angles witrin the i£near ronge that, although limited, includes most flight concitions. Sxtunding tho methods to tho larger elovator angles that arc used in certain mew neuvers moy serve to shoy no more bhen tho order of megnitude of the hitqe moment:

The basic equation for hinge moment, taken from reference 19, is

$$
\begin{equation*}
c_{h_{e}}=u c_{\mathbb{N}_{t}}+v \delta_{e} \tag{20}
\end{equation*}
$$

where the coefficients $O_{h e}$ and C_{t} are based on the local dynamic pressure acting at the tail. The hingemoment parameters u and v should be innctions mainly of the area ratios S_{e} / S_{t} and S_{b} / S_{e}.

The values of u and ∇ were determined experimenttally by using the following relations, based on equation (20):

$$
\left.\begin{array}{l}
u=\left(\partial c_{h_{e}} / \partial c_{N_{t}}\right)_{\delta_{e}} \tag{21}\\
v=\left(\partial c_{h_{e}} / \partial \delta_{c}\right)_{o_{N_{t}}}
\end{array}\right\}
$$

The parameter u was obtained as the mean slope of the curve obtained by plotting $C_{h_{e}}$ against $C_{\text {保 }}$ for an elevator angle of $0^{\circ} ; \quad v$ was similarly obtained from an interpolated curve of $\mathrm{C}_{h_{e}}$ (based on local dynamic pressure) against ε_{0} for $C_{\text {相 }}=0$. Specifically, the factors were obtained as follows:
$\left(\mathrm{C}_{\mathrm{h}}\right)_{\delta}=0 \quad \begin{gathered}\text { from curves } \\ \text { figure } 44\end{gathered}$
$\left(\sigma_{N_{t}}\right)_{\delta_{e}=0}$ from the experimental values given in figures 37 and 33 by equation $c_{N_{t}}=-c_{m_{t}} \frac{\bar{c}_{w}}{q_{2}} \frac{S_{w}}{S_{t}}$
$\left(\delta_{e}\right)_{C_{\mathbb{N}_{t}}}=0$
from figures 37 and 38 and figures 27 and 28 by tho equation $\delta_{0}=\frac{\sigma_{m}}{d 0_{m} / d \delta_{e}}$
$\left(c_{h_{e}}\right)_{c_{\mathbb{N}}=0}$
from curves similar to those shown in figure 44 for values corresponding to $\left(\delta_{e}\right)_{\mathrm{C}_{\mathrm{H}_{\mathrm{t}}}=0}$
(q / q_{0}) av by oross-fairing the values given in tables I and II

The average experimental value of u is -0.022 and of v is -0.0043 . The generalized charts of reference 20 , which were based on tests of a large number of isolated tail surfaces, indicate a value of $u=-0.067$ and $v=$ - 0.0084 for the horizontal tail surface.

The disacreanent between the values of u and v determined from these tests and from the eeneralized charts of reference 20 is considerable. References 21 and 22 indicate, however, thet details of clevator plan form and trailing-edge profile may considerably affect u ard v; other factors, such as coale effect and the cut-out, probatly affoct the prossure distribution over the elevator. For these roasons it is not unlikely that charts based on a large puaber of tests with various uncontrolled factors rould be unsatisiectory for eny particular tail.

The Rate of Change of Hinge Noment vith IIevator Deflections.

The rate of olhange of hinge moment with elevator deflection at constart angle of attack $d C_{h_{e}} / d \delta_{e}$ has been determined by measuring the slope at $\delta_{e}=0^{0}$ of curves similar to those shown in figure 44. Tho experimental variation of this qactor with angle of attack and with thrust coefficfent is given in figure $45(\mathrm{a})$ for the case with retractzc finps and in figure $45(0)$ for the cone with deflected flaps. It should be mentioned that the hinee-moment coefficient $\quad C_{h_{e}}$ is based on free-stream dynanic pressure.

The formule for calculating $d C_{\mathrm{h}} / \mathrm{d} \delta_{e}$ may be obtained by differentiating equation (20). If the difference between the effective and the average dynamic pressures at the tail is neglected, the final expression is

$$
\begin{equation*}
d c_{h_{e}} / \dot{d} \varepsilon_{e}=\left[u \tau\left(\frac{d \sigma_{T_{t}}}{\dot{c}_{t}}\right)+v\right]\left(\frac{a}{a_{0}}\right)_{z v} \tag{22}
\end{equation*}
$$

where, if desired, (q/qo)av for the propeller-operating conditions may be calculated from

$$
\begin{equation*}
\left(\frac{q}{q_{0}}\right)_{a v}=\left(\frac{q}{q_{0}}\right)_{0}+2 s_{s} \frac{\bar{o}_{t} \bar{c}_{t_{j}}}{s_{t}} \tag{23}
\end{equation*}
$$

For comparison, $d \delta_{h_{e}} / \mathrm{d} \delta_{e}$ values were calculated, experimental values being used for all factors, and are also presented in figure 45.

The experimental and the calculatod values are in excellent agreement for the case with flaps retracted. The agreement, however, is not entirely satisfactory for the case with flaps deflected; the discrepancy probably arises from the very marked variation in dynamic pressure across the elevator span.

Elevator Free-Floating Angle
The elevator free-floating angle is important with regard to stick-free stability characteristics of an airplane. The formula for calculating it is derived by simultaneously solving equation (20), with $\sigma_{h_{e}}=0$, and the normal-force equation. If the difference between the effective end the nverage dynamic pressure at the tail is neglected, the solution is

$$
\begin{equation*}
\delta_{e_{f f}}=-\frac{u\left(d c_{\mathbb{N}_{t}} / \alpha \alpha_{t}\right)\left(\alpha_{T}+i_{t}-\epsilon_{e f f}\right)}{u\left(d c_{\mathbb{N}_{t}} / d \alpha_{t}\right) \tau+v} \tag{24}
\end{equation*}
$$

By the substitution into this equation of values previously derived, the elevator free-floating angles were computed for a number of conditions. The results are plotted in figure 46 , together with experimental values for the same conditions. There eppears to bo en almost constant difforence of about 2° in off between the two sets of curves. The discrepancy is possibly due to dissymmetry of the tail surface. Reasurements showed that the elevator hinge line was slightly above the chord line; it is uncertain, however, whether this error in construction can account for the entire observed discrepancy.

Stick Forces
The stick forces required to trim the airplane at any given condition can be determinod from these tests after the corresponding elevator hinge-moment coefficients have been evaluated. The usual method of determining these coefficients is to use the basic equation for hinge moment

$$
\begin{equation*}
c_{h_{e_{t r}}}=\left(v \cdot c_{N_{t}}+v \delta_{e t r}\right)\left(\frac{q}{q_{0}}\right)_{a v} \tag{25}
\end{equation*}
$$

where

$$
\delta_{e_{t r}}=\frac{\left(C_{\mathrm{E}_{A}}\right)_{\delta_{e}}=0}{\frac{d \delta_{m}}{d \delta_{e}}}
$$

and

$$
C_{\mathbb{F}^{\pi}}=\left(\frac{\bar{X} C_{\mathbb{N}_{t}}}{\bar{d} \alpha_{t}}\right)\left(\alpha_{T}+i_{t}-\epsilon_{e f f}+T \delta e_{t r}\right)
$$

Inasmuch as the elevator free-floting angles and the rates or change of hingemoment coefficient with elevator deflection have been experimentally determined (figs. 45 and 46), the hingemoment coefficient at trim has been obtained more simply from

$$
\begin{equation*}
c_{h_{e_{t r}}}=\left(\delta_{e_{t r}}-\delta_{e_{f f}}\right) \frac{d C_{h_{e}}}{d \delta_{e}} \tag{26}
\end{equation*}
$$

Values of $\mathrm{Ch}_{\mathrm{otr}}$ are presented in figures 47 and 48 for the conditions with flaps retracted and with flaps defloated, respective ?y. Experimental values of $C_{m_{A}}$ and ($\mathrm{CO}_{\mathrm{m}} / \mathrm{d} \delta_{0}$) have ben taken from figures 29 and 30 (for $i_{t}=1.2^{0}$) and figures 27 and 28.

Neglecting the effects of faction in the control system allows the stick forces for trim to bo calculated from

$$
\begin{equation*}
F_{t r}=\frac{c_{h_{1}} e_{t r} q_{0} s_{e} \bar{\delta}_{e}}{l_{s}} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{0}=\frac{w}{\sigma_{I_{A_{p}}}} \tag{28}
\end{equation*}
$$

or, if the airplane is climoing or diving at a large argle,

$$
\begin{equation*}
q_{0}=\frac{W \cos \left(t_{\mathcal{A n}^{-1}} \frac{\frac{2 D E}{S_{W}} T_{0} \cos \alpha-C_{D}}{C_{L_{A_{P}}}}\right)}{{ }_{C_{T_{A_{P}}}} S_{W}} \tag{29}
\end{equation*}
$$

At high angles of attack and laree thrust coefficients equation (28) gives values of g_{0} thet are about le percent greater thon those obtained from equation (29). Sufficiently accurate values of $C_{I_{A_{p}}}$ mary be obtained from figures 5 and 7 and values of C_{D} may be obtained from figure 4.

SUNVARY OF FIMDINGS

The following remaris, elthough applying directly to the mock-up tested, probebly possess varying degrees of genercil applicability.

1. For cases vith flaps deflected, the propelleropereting conditions cannot be directly determined from the rropeller-removed lift coefficiont.
2. The slope of the lift curve of the tailless mock-up can be eccurately calculated by the use of references 7 and 8.
3. The forward shift of the aerozynamic center of the plain wing ceused by the fuselage can be estimated by the use of references 6 aid 10.
4. Tho offoct of propoiler operation on the lift ! and on the pitching momert oi the tailloss mock-up with retracted fisps con be setisfactorily estimated from the procedures fiven in reference 5 .
5. With the flaps deflccted, the increments of lift Wue to propeller operation pre much larger than those obtained ior the corcespondine condition with the flaps retracted: The differonco \pm probably due to the effect of tho slipstream on the flappedwwing vortex system.
6. Tho slivstream markedly increases the flappodwing diving monent.
7. The isolcted-tail paramuters, as determined from these tests, compare satisfactorily with trose given by the charts of reference 14.
8. Tho effectivo dynamic pressure at the tail for the propellor-oporating conditiors can be accurately estimatod from reforoncas 5, 11, and 55.
9. Who downwash anglos at the tail detorinined from aiffercnt teil sottings are not qqual to those determinod from air-zilow survoys, especially at low angles of attack.
1.O. Wine average downesh anglos of the air flow at the toil, with the propeller removed, can be closely calculeted irom references 16,17 , and 18 .
10. The methods of calculating the propelleroporatino downosh angle at the tail from reference σ ore barely satisfactory as first approxinotions unless empirical coriection factors are used. It is belieted that most of the discrepancy, for the flap-deflected conuition, may be attributed to the nethocs of celculating the downwesh due to the propeiler.
11. Pitciling-moment curvos for very rearly similar airplrnes can probably bo satisfactorily estimated by the use of the propellem-renoved pitching moment of the tailless airplano and the emoirical downwosh correction factors.
12. The use of the cherts of reference 20 for determinirg u and v, which ere besed on the results of P large number of tests of worizontal tails, is unsatisfactory. Kofurencos 21 and 22 indicate that dotails of the elevator plan form and trailing-ode profile are important considenetions.
13. The cifnb or the dive angle of an airplane in powered flight should bo coneidered in calculating the free-strean aynamic pressure.

COTGLUDING REMAPKS

Most of the basic.factors affecting the pitching moments and the stick forces of en airplane can be satisfactorily astinated by use of the avialable theories cnd procedures; further systematic evperiments and related theories, howaver, cre necesiary before the downash at the tail with propzller operating may be reliably predicted. Experirental data and charts of the ingemoment parameters should be used with extremo care, and duo consideration should be given to the varlous factors affecting these parameters.

Langley Momorisl A三anoutical Teroratory,
Mational Advisory Comititee for Aeronautics. Langley gield, Fa .

REFERATCES

1. Defrarce, Smith J.: The fi.A.C.A, Full-Scale tind「urinoi. Rer. No, 459, NACA, 1933.
2. Silverstein, Aue, and White, James A,: Wind-Tunael Interference with Ferticular Reference to Off-Conter Positions of the Fing and to the Downash at the Tail. Fep. No, 547, HACA 1935.
3. Theodorsen, Theodors, and Silyerstein, Abe: Experimental Verification O the Theory of Vind-Tunnel Boundary Ingerference, Rep. No. 478, HACA, 1934.
4. Silverstoin, Lbe, and Katzofe, S.: Pxporimental Envestigation of wind-2unael Interference on the Downash beyint an Airfoil. Rep. No. EOQ, WACA, 1937.
5. Goett, Harry J., and Fass, H. R.: Fifect of Propeller Operation on the Fitching Moments of Single-Engine Horoplenes. NAOA A.O.R.s May 194.
6. Jacobs, Eestman N., and Vard, Kenneth E.: Intarference of Wing and Fucelage from Tosto of 309 Combinations in the NoA.C.A. Variable-Density Gunal. Rey. No. 540, TiOA: 1935.
7. Anderson, Eammon F. Dotemination of the Characteristics of rapored Jings. Rop. No. 572, NaCA, 1936.
8. Pearson, Honry A, and Anderson, Ratmond Fi: calcuculation of the Aerodymemic Charactaristics of Taporod Vings with Paytial-Spon Flaps. Rop. No. $665, \mathrm{MACA}, 1939$.
9. Thompon, K. J.: A simple Motrod for Determining the Aorodynamic denter of an Airfoil. Jour. Aero. Soi., vol. 5, no. 4, Fè. 1938, pp. 138-140.
 TM No. 10:5, 1242.
10. Smelt, R., end Davies, Fio: Rstimation of Increase in Lift due to slipstienm. R. \& M. No. 1788, 3ritish A.?.C., 1957.
11. Katzoff, 5.: Longitudines stability and control with Special Reference to Siipstream Effects. Rer. No. 690, MACA, 104C.
12. Glauert, H.: Airplane Propellers. Vol. IV, diy. L, sec. 5, ch. XII of Aerciynamic mheory, W. F. Durend, ed., Julius Springer (ierijn), 1935, सn. 351-357.
13. Silverstein, Abe, and Katzoff, S.: Aerodynamic Characteristics of Horizontal Tail Surfaces, Ref, Ho. 688, NACA, 1040.
14. Koning, 0.: Influence o the propetier on Other Parts of the Airglane Struature. Vol. IV, div. M of Aerodynamic Thecry, $\%$. $\#$. Durand, ed., Julius Springer (Berliz), 1235, pp. 36i-430.
15. Silverstein, Abe, Katzoif, 5 , and Bullivant, W. Kenneth: Downwash and Wake behind Plain and Flapped Airfoils. Rep. No. E51, NACA, 1939.
16. Silverstein, Abe, and Etzoff, S.: Desien Charts For Predicting Downuesh Anglez and Vawe Cheracteristics behind Plain and Flepped Wings. Rep. No. 643, Nidit, 1939.
17. Pearson, Henry A., and Jones, Robert T.: Theoretical Stability ade control oheracteristics of wings with Various Amounts of Taper and Trist. Rep. No. 635, NACA, 1938.
18. Glavert, Y. Mhoretical Pelationships for an Aerofoil with Einced Fiap. R. \& M. No. 1095, Exitish A.R.C., 1927.
19. Fass, E. ㄹ.: Analysis of Wind-Tunnel Data on Directional stability and control. T. N. No. 775, NACA, 1940.
20. Jones, Bonert F., ard Cohor, Doris: Detormination of Optimum finc Torms for control Surfocos. ITCi: Rop. No. 721, 1842.
21. Joats, Robert T., ant Lmer, Nition B., ir.: WindTumel Investigation of control-Surface Characteristics, y - The ijee of a Beveled. Trejiling Gdge to Reduce the Kinge Moment of a Control Surface. MACA A.R.R., Mnrch 1942.

α_{T} (des)	T_{c}	$\begin{gathered} \beta \\ (\operatorname{dog}) \end{gathered}$	$\left(q / q_{0}\right)_{2 a}$	$\left(q / q_{0}\right)_{a v}$	$\begin{gathered} \epsilon \mathrm{aa} \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} \epsilon_{\mathrm{av}} \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \epsilon \mathrm{eff} \\ (\mathrm{deg}) \end{gathered}$	$\begin{aligned} & e_{\mathrm{cal}} \\ & (\mathrm{deg}) \end{aligned}$
-0.2	(a)	(a)	0.87					
-0.2	(a)	(a)	0.87	0.84 .79	1.2	1.2	2.5	0.8
6.9	(a)	(a)	84	. 81	4.6	4.7	4.2	2.4
10.9	(a)	(a)	. 82	. 79	6.6	6.6	6.4	6.3
-2.8	0	41	. 94	. 91	. 1	. 1	1.0	-. 5
-2.5	. 02	34	. 93	. 92	. 4	. 4	1.1	-. 3
-1.5	0	36	. 93	. 90	. 8	. 9	1.7	. 2
-1.5	. 02	41	. 99	. 96	. 7	. 6	1.7	. 2
-. 2	. 01	53	. 87	. 85	1.3	1.3	2.5	. 9
-. 2	. 04	50	. 97	. 95	1.3	1.4	2.5	. 9
1.0	. 08	29	1.08	1.07	2.8	2.8	3.5	1.9
3.1	. 03	30	. 93	. 91	3.1	3.0	4.5	2.6
3.1	. 09	37	1.04	1.03	3.3	3.3	4.7	2.8
5.0	. 16	26	1.29	1.26	5.2	5.3	6.1	4.5
5.1	. 01	26	. 96	. 93	5.2	4.6	5.3	3.8
6.8	. 11	30	1.09	1.07	5.9	6.0	7.1	5.5
6.8	. 18	37	1.44	1.46	5.1	5.4	7.1	6.1
8.9	. 05	26	1.02	1.00	6.8	7.0	7.8	6.3
10.7	. 31	35	1.62	1.63	8.7	9.1	9.9	9.9
14.5	. 46	29	2.01	2.01	12.6	12.9	12.7	14.2
14.7	. 12	29	1.17	1.15	10.7	11.1	11.7	10.9

${ }^{\text {appropeller removed }}$
TABLE I I

COMPARISON OF EXPERIMENTAL AND CALCULATED
DOWNWASH ANGLES FOR MOCK-UP WITH FLAPS DEFLECTED

$\left\|\begin{array}{c} a_{T} \\ (\mathrm{deg}) \end{array}\right\|$	T_{c}	$\begin{gathered} \beta \\ (\operatorname{deg}) \end{gathered}$	$\left(q / q_{0}\right)_{a a}$	$\left(q / q_{0}\right)_{\text {av }}$		$\begin{gathered} \epsilon \mathrm{av} \\ (\mathrm{deg}) \end{gathered}$		$\begin{aligned} & \epsilon_{c a l} \\ & (\mathrm{deg}) \end{aligned}$
7.8	(a)	(a)	0.88	0.85	10.7	11.8	11.2	10.5
15.1	(a)	(a)	. 83	. 81	13.0	13.0	13.0	14.6
5.8	0.22	23	1.55	1.61	14.0	13.2	14.9	12.7
6.1	. 07	18	1.28	1.27	13.0	12.6	12.3	11.0
7.3	. 52	28	1.92	2.03	16.3	15.6	18.9	16.4
8.6	. 34	23	1.67	1.72	16.6	16.7	17.2	16.5
9.6	. 35	32	1.60	1.66	16.6	16.5	17.5	17.6
9.7	.17	18	1.34	1.36	15.2	15.2	15.6	14.9
9.7	. 19	18	1.36	1.38	16.3	16.6	15.8	15.3
12.8	. 46	23	1.80	1.89	19.4	19.9	19.3	21.9
13.1	. 21	18	1.35	1.35	18.0	17.4	17.1	18.4
14.2	. 58	28	2.00	2.01	21.4	20.1	20.8	24.8
15.0	. 08	28	1.03	1.03	16.5	16.7	16.4	18.1

${ }^{\text {apropeller removed }}$

Figure 1.-Three-view drawing of mock-up. All dimensions are in feet.

Figure 2. -Propeller characteristics as determined from tests of the complete mock-up in the NACA full-scale wind tunnel. Threeblade Curtiss electric propeller, blade 614Cc1.5-24, hollow steel.

Figs. 5,6

-
Figs. 7,8
Fisure 8.- Experimental and calculated effect of propeller operation on

"
NACA

Figure 9.- Comparison of the calculated effect of propelier forces alone with the experimental effect of propeller operation on the pitching-moment coefficients of the wing-fuselage combimation with deflected flaps.
Figure 26.- Effect of tail settind on the pitching- moment coefficients of the mock-up with retracted flaps, propeller removed.

Figs. 9,26

NACA

(a) Dynamic -pressure (q / a_{0}) contours.
-igure 10. - Air flow in the plane of the e'evator hinge line.
View looking forward; $x_{T},-0.2^{\circ}$,
δ_{f}. 0°; propeller removed.
$2-2$
Fig. 11

(a) Dynamic-pressure $\left(q / q_{0}\right)$ contours.
Figure 11 .-Air flow in the plane of the elevator hinge line.
View looking forward; $\alpha_{T}, 3.1^{\circ}$;
\&, 0°; propeller removed.

figure 12. - Air flow in the plane of the
elevator hinge line.
View looking forward; $\alpha_{\varphi}, 6,9^{\circ}$;
δ_{f}, O^{\prime}; propeller removed.

(b) Inclination of the oir strem.
-

Fig. 13

(a) Dynamic-pressure $q / 9 / 90$) contours.

Figure 13. - Air flow in the plane of the elevator hinge view looking for ward; $\alpha_{T}, 10.9^{\circ}$; $\delta_{f}, 0$; propeller removed.

(a) Dynamic-pressure $\left(q / q_{0}\right)$ contours.

Figure 14. - Air flow in the plane of the elevator hinge line.

View looking forward; $d_{T}, 7.8^{\circ}$; $\sigma_{f}, 40^{\circ}$; propeller removed.

NACA
(a) Dynamic pressure $\left(q / q_{0}\right)$ contours.

F ic re 15.- Ar flow in the pure of the elevator ringeline. View looking forward; $d_{T}, 15.1^{\circ}, \delta_{f}, 40^{\circ}$; propeller removed.

（a）Dynomic－pressure $\left(9 / q_{0}\right)$ contours．
Figure 16．－Air flow in the plane of the elevator hinge line．View looking for－ wards $d_{T},-0.2^{\circ}: \sigma_{f} \cdot 0^{\circ}: T_{c}, 0.014$.

(a) Dynamic-pressure $\left(9 / a_{0}\right)$ contours.

Figure 17.- Air flow in the plane of the elevotor hinge line view looking forward; $\alpha_{T},-02^{\circ} ; \delta_{f}, 0^{\circ} ; T_{c}, 0.04$.

Figure 17.-Concluded
(b) Inclination of the air streon.

(a) Dynamic-pressure $\left(q / q_{a}\right)$ contours.

Figure 18. -Air flow in the plane of the

-

(a) Dynamic-pressure $\left(q / q_{0}\right)$ contours.

Figure 19. - Air flow in the plane of the elevator hinge line.
View looking forward; $\alpha_{T}, 3.1_{\text {; }}$
1 $\sigma_{f}, 0^{\circ} ; T_{c}, 0.03$.

(b) Inclination of the air stream.

Figure 19.- Concluded.

(a) Dynamic-pressure (q / q_{0}) contours.

Figure 20. - Alr flow in the plane of the elevator ninge line. View looking forword; $\alpha_{T}, 6.8^{\circ}$;

Fig. 21

Figure 21. - Air flow in the plane of the contours.
Figure 21. - Air flow in the plane of the elevator hinge line. View looking for word; $\alpha_{T}, 6.8$;
$\delta_{f}, o_{;}, ~ 0.11$.
1 $\delta_{p}, o_{;} T_{c}, 0.11$.

(b) Inclination of the air stream

Figure 21. - Concluded.

Fig. 22

(a) Dynamic-pressure $\left(a / q_{0}\right)$ contours.

Figure 22. Airflow in the plane of the elevator hinge line. View looking forward: $\alpha_{T}, 10.7^{\circ} ; \delta_{f}, 0^{\circ} ; T_{c}, 0.31$.

(o) Distonce from center line, pt

Fig, re 23.- Air fiow in the elevctor hinge line. View lcoking forward; $d_{T}, 7.3^{\circ}$:
of. $40^{\circ} ; T_{c}, 0.52$.

Figure 23-Concluded.

(o) Dynamic-pressure ($9 / 9_{0}$) contours.

Figure 24.- Air flow in the elevator hinge line. View looking forward; $d_{T}, 15.0^{\circ}$;

1.0
1.2
1.5
2.0

Fig. 25
(Fig. 26 wifititig. 9)

-1.0

Figure 25.-Air flow in the plone of the tievator hinge line. View looking forward; $\alpha_{T}, 14.2^{\circ} ; 6 f, 40^{*} ; T_{C}, 0.58$.

Figure 25.-Concluded.
Distance from center line, ft
(b) Inclination of the oir stream.

Figs. 27,28

Figure 29 . - Variation of pitchins-moment coefficient with angle of aftack and thrust cofficient for different tail settings; flaps retraited. Dotted curves are from extrapolited values

Fig. 30

Figure 30 . - Variation of pitching-moment coefficient with angle of attack and thrust coefficient for different tail settings, flaps deflected Dotted curves are from extrapolated values.

Figs. 31,32

Figs. 33,34

$$
\begin{aligned}
& \begin{array}{l}
\text { Figure 33- Average variation of the empirical factor }, \Delta \epsilon_{1} \text { with } \epsilon_{\mathrm{av}} \\
\text { for all flap and propeller conditions. }
\end{array}
\end{aligned}
$$

$-H$
$-H$
$-H$
NACA

\square
Figure 35 - Comparison of experimental and calculated tail Figure contributions to the pitching moment. Propeller removed; flaps retracted; $i_{t}=1.2^{\circ}$. Experimental values have beem
obtained from cross plots.

Figs. 35,36

Figure 37 .- Comparison of experimental and calculated tail contributions to the pitching mament. Propeller operating; flaps retracted; $i_{t}=1.2^{\circ}$. Calculated values have been obtained with $\epsilon_{\text {cal }}+\Delta E_{1}+\Delta E_{z}$

Figure 38 - Comparison of experimental and calculated tail contributions to the pitching moment. Propeller operating; flaps deflected; $i_{6}=1.2^{\circ}$. Calculated values have been obtained with $\epsilon_{c a 1}+\Delta \epsilon_{1}+\Delta \epsilon_{2}$.

Figs. 39,40

Figs. 41,42

Figure 43. Effect of lanling-gear extensien on the pitching moments. Pripeller removed; constant center- of-gravity position.

Figs. 47,48

