29,022 research outputs found

    T-Duality and Conformal Invariance at Two Loops

    Get PDF
    We show that the conformal invariance conditions for a general sigma-model with torsion are invariant under T-duality through two loops.Comment: 21 pages. Uses RevTex. Revised Version with extra references and typos correcte

    Background Rejection in Atmospheric Cherenkov Telescopes using Recurrent Convolutional Neural Networks

    Full text link
    In this work, we present a new, high performance algorithm for background rejection in imaging atmospheric Cherenkov telescopes. We build on the already popular machine-learning techniques used in gamma-ray astronomy by the application of the latest techniques in machine learning, namely recurrent and convolutional neural networks, to the background rejection problem. Use of these machine-learning techniques addresses some of the key challenges encountered in the currently implemented algorithms and helps to significantly increase the background rejection performance at all energies. We apply these machine learning techniques to the H.E.S.S. telescope array, first testing their performance on simulated data and then applying the analysis to two well known gamma-ray sources. With real observational data we find significantly improved performance over the current standard methods, with a 20-25\% reduction in the background rate when applying the recurrent neural network analysis. Importantly, we also find that the convolutional neural network results are strongly dependent on the sky brightness in the source region which has important implications for the future implementation of this method in Cherenkov telescope analysis.Comment: 11 pages, 7 figures. To be submitted to The European Physical Journal

    Glycyl-L-proline hemihydrate at 298 K

    Get PDF

    Redundant Array Configurations for 21 cm Cosmology

    Full text link
    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays--in which the same mode on the sky is sampled by many antenna pairs--for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA's can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via "off-grid" antennas and increased angular resolution via far-flung "outrigger" antennas is possible with a redundantly calibratable array configuration.Comment: 19 pages, 11 figures. Revised to match the accepted ApJ versio

    Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest): Black, green, and red abalones

    Get PDF
    All abalones belong to the genus Haliotis sensu latu, family Haliotidae. The 75 species known worldwide (Booloot ian et, al. 1962) are anatomically similar and all are adapted for attachment to hard substrates. Seven species are widely distributed along the coast of California (Cox 1962; Mottet 19781, of which several are important in the comercial and sport fisheries of the Pacific Southwest. (PDF has 19 pages.

    The evolution of the self-lensing binary KOI-3278: evidence of extra energy sources during CE evolution

    Full text link
    Post-common-envelope binaries (PCEBs) have been frequently used to observationally constrain models of close-compact-binary evolution, in particular common-envelope (CE) evolution. However, recent surveys have detected PCEBs consisting of a white dwarf (WD) exclusively with an M dwarf companion. Thus, we have been essentially blind with respect to PCEBs with more massive companions. Recently, the second PCEB consisting of a WD and a G-type companion, the spectacularly self-lensing binary KOI-3278, has been identified. This system is different from typical PCEBs not only because of the G-type companion, but also because of its long orbital period. Here we investigate whether the existence of KOI-3278 provides new observational constraints on theories of CE evolution. We reconstruct its evolutionary history and predict its future using BSE, clarifying the proper use of the binding energy parameter in this code. We find that a small amount of recombination energy, or any other source of extra energy, is required to reconstruct the evolutionary history of KOI-3278. Using BSE we derive progenitor system parameters of M1,i = 2.450 Msun, M2,i = 1.034 Msun, and Porb,i ~ 1300 d. We also find that in ~9 Gyr the system will go through a second CE phase leaving behind a double WD, consisting of a C/O WD and a He WD with masses of 0.636 Msun and 0.332 Msun, respectively. After IK Peg, KOI-3278 is the second PCEB that clearly requires an extra source of energy, beyond that of orbital energy, to contribute to the CE ejection. Both systems are special in that they have long orbital periods and massive secondaries. This may also indicate that the CE efficiency increases with secondary mass.Comment: Accepted for publication in A&A Letters, 4 pages, 2 figure

    Kinetic study of adsorption and photo-decolorization of Reactive Red 198 on TiO2 surface

    Get PDF
    Recycling and reuse of wastewater after purification will reduce the environmental pollution as well as fulfill the increasing demand of water. Adsorption-based water treatment process is very popular for dye-house wastewater treatment. The present study deals with treatment of wastewater contaminated by reactive dye. TiO2 is used as adsorbent and the spent adsorbent has been regenerated by Advanced Oxidation Process (AOP), without using any other chemicals. TiO2 adsorbs dye molecules and then those dye molecules have been oxidized via a photocatalytic reaction in presence of UV irradiation. Kinetics of dye adsorption and photocatalytic oxidation reaction has been developed in this study. Photocatalyst adsorbent (TiO2) has been reused several times after regeneration. The activity of catalyst decreases after each cycle; due to poisoning cause by intermediate by-products. Kinetic of this catalyst deactivation has been incorporated with L–H model to develop the photocatalytic reaction kinetic model
    • …
    corecore