41 research outputs found
Two-Loop g -> gg Splitting Amplitudes in QCD
Splitting amplitudes are universal functions governing the collinear behavior
of scattering amplitudes for massless particles. We compute the two-loop g ->
gg splitting amplitudes in QCD, N=1, and N=4 super-Yang-Mills theories, which
describe the limits of two-loop n-point amplitudes where two gluon momenta
become parallel. They also represent an ingredient in a direct x-space
computation of DGLAP evolution kernels at next-to-next-to-leading order. To
obtain the splitting amplitudes, we use the unitarity sewing method. In
contrast to the usual light-cone gauge treatment, our calculation does not rely
on the principal-value or Mandelstam-Leibbrandt prescriptions, even though the
loop integrals contain some of the denominators typically encountered in
light-cone gauge. We reduce the integrals to a set of 13 master integrals using
integration-by-parts and Lorentz invariance identities. The master integrals
are computed with the aid of differential equations in the splitting momentum
fraction z. The epsilon-poles of the splitting amplitudes are consistent with a
formula due to Catani for the infrared singularities of two-loop scattering
amplitudes. This consistency essentially provides an inductive proof of
Catani's formula, as well as an ansatz for previously-unknown 1/epsilon pole
terms having non-trivial color structure. Finite terms in the splitting
amplitudes determine the collinear behavior of finite remainders in this
formula.Comment: 100 pages, 33 figures. Added remarks about leading-transcendentality
argument of hep-th/0404092, and additional explanation of cut-reconstruction
uniquenes
Supersymmetric Regularization, Two-Loop QCD Amplitudes and Coupling Shifts
We present a definition of the four-dimensional helicity (FDH) regularization
scheme valid for two or more loops. This scheme was previously defined and
utilized at one loop. It amounts to a variation on the standard 't
Hooft-Veltman scheme and is designed to be compatible with the use of helicity
states for "observed" particles. It is similar to dimensional reduction in that
it maintains an equal number of bosonic and fermionic states, as required for
preserving supersymmetry. Supersymmetry Ward identities relate different
helicity amplitudes in supersymmetric theories. As a check that the FDH scheme
preserves supersymmetry, at least through two loops, we explicitly verify a
number of these identities for gluon-gluon scattering (gg to gg) in
supersymmetric QCD. These results also cross-check recent non-trivial two-loop
calculations in ordinary QCD. Finally, we compute the two-loop shift between
the FDH coupling and the standard MS-bar coupling, alpha_s. The FDH shift is
identical to the one for dimensional reduction. The two-loop coupling shifts
are then used to obtain the three-loop QCD beta function in the FDH and
dimensional reduction schemes.Comment: 44 pages, minor corrections and clarifications include
What Can Be Learned with an Iodine Solar-Neutrino Detector?
We study the potential benefits of an iodine-based solar-neutrino detector
for testing hypotheses that involve neutrino oscillations. We argue that such a
detector will have a good chance of distinguishing the two allowed regions of
-- parameter space if neutrino conversion is
occurring in the sun. It should also be able to detect seasonal variations in
the signal due to vacuum oscillations and might be sensitive enough to detect
day/night variations due to MSW transitions in the earth. Although it would
need to be calibrated, a working iodine detector could be completed before more
ambitious projects that seek to accomplish the same things.Comment: 8 pages, RevTex, 2 uuencoded figures, submittted to Phys. Rev.
Search for single top quark production in ppbar collisions at sqrt(s)=1.96 TeV
We present a search for electroweak production of single top quarks in the
s-channel and t-channel using neural networks for signal-background separation.
We have analyzed 230 pb of data collected with the D0 detector at the
Fermilab Tevatron Collider at a center-of-mass energy of 1.96 TeV and find no
evidence for a single top quark signal. The resulting 95% confidence level
upper limits on the single top quark production cross sections are 6.4 pb in
the s-channel and 5.0 pb in the t-channel.Comment: 9 pages, 4 figure