1,428 research outputs found

    Genetic diversity of Legionella pneumophila inferred from rpoB and dotA sequences

    Get PDF
    ABSTRACTThis study characterised the population structure of Legionella pneumophila by comparing the rpoB (300-bp) and dotA (360-bp) sequences of 267 isolates (18 reference strains, 149 Korean isolates and 100 Japanese isolates). In addition to the six clonal subgroups established previously, four subgroups, P-V to P-VIII, were identified. Subgroupings based on rpoB and dotA sequences were found to correlate with the source of the isolates, and this data may be useful for future epidemiological studies. Fourteen (five Korean and nine Japanese) isolates showed incongruent subgroupings in the rpoB and dotA trees, suggesting that genetic exchange among subgroups, and even among subspecies, may occur frequently in nature

    Is manganese-doped diamond a ferromagnetic semiconductor?

    Full text link
    We use density-functional theoretical methods to examine the recent prediction, based on a mean-field solution of the Zener model, that diamond doped by Mn (with spin S=5/2) would be a dilute magnetic semiconductor that remains ferromagnetic well above room temperature. Our findings suggest this to be unlikely, for four reasons: (1) substitutional Mn in diamond has a low-spin S=1/2 ground state; (2) the substitutional site is energetically unfavorable relative to the much larger "divacancy" site; 3) Mn in the divacancy site is an acceptor, but with only hyperdeep levels, and hence the holes are likely to remain localized; (4) the calculated Heisenberg couplings between Mn in nearby divacancy sites are two orders of magnitude smaller than for substitutional Mn in germanium.Comment: 5 pages, 5 figure

    High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing

    Get PDF
    Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm

    Hydrogen-bonded Silica Gels Dispersed in a Smectic Liquid Crystal: A Random Field XY System

    Full text link
    The effect on the nematic to smectic-A transition in octylcyanobiphenyl (8CB) due to dispersions of hydrogen-bonded silica (aerosil) particles is characterized with high-resolution x-ray scattering. The particles form weak gels in 8CB creating a quenched disorder that replaces the transition with the growth of short range smectic correlations. The correlations include thermal critical fluctuations that dominate at high temperatures and a second contribution that quantitatively matches the static fluctuations of a random field system and becomes important at low temperatures.Comment: 10 pages, 4 postscript figures as separate file

    Effective interactions of colloids on nematic films

    Get PDF
    The elastic and capillary interactions between a pair of colloidal particles trapped on top of a nematic film are studied theoretically for large separations dd. The elastic interaction is repulsive and of quadrupolar type, varying as d−5d^{-5}. For macroscopically thick films, the capillary interaction is likewise repulsive and proportional to d−5d^{-5} as a consequence of mechanical isolation of the system comprised of the colloids and the interface. A finite film thickness introduces a nonvanishing force on the system (exerted by the substrate supporting the film) leading to logarithmically varying capillary attractions. However, their strength turns out to be too small to be of importance for the recently observed pattern formation of colloidal droplets on nematic films.Comment: 13 pages, accepted by EPJ

    Theory of Current and Shot Noise Spectroscopy in Single-Molecular Quantum Dots with Phonon Mode

    Full text link
    Using the Keldysh nonequilibrium Green function technique, we study the current and shot noise spectroscopy of a single molecular quantum dot coupled to a local phonon mode. It is found that in the presence of electron-phonon coupling, in addition to the resonant peak associated with the single level of the dot, satellite peaks with the separation set by the frequency of phonon mode appear in the differential conductance. In the ``single level'' resonant tunneling region, the differential shot noise power exhibit two split peaks. However, only single peaks show up in the ``phonon assisted'' resonant-tunneling region. An experimental setup to test these predictions is also proposed.Comment: 5 pages, 3 eps figures embedde

    Low-dimensional representations of exact coherent states of the Navier-Stokes equations from the resolvent model of wall turbulence

    Get PDF
    We report that many exact invariant solutions of the Navier-Stokes equations for both pipe and channel flows are well represented by just few modes of the model of McKeon & Sharma J. Fl. Mech. 658, 356 (2010). This model provides modes that act as a basis to decompose the velocity field, ordered by their amplitude of response to forcing arising from the interaction between scales. The model was originally derived from the Navier-Stokes equations to represent turbulent flows and has been used to explain coherent structure and to predict turbulent statistics. This establishes a surprising new link between the two distinct approaches to understanding turbulence
    • 

    corecore