226 research outputs found

    Proximal and distal control for ligand binding in neuroglobin: role of the CD loop and evidence for His64 gating

    Get PDF
    Neuroglobin (Ngb) is predominantly expressed in neurons of the central and peripheral nervous systems and it clearly seems to be involved in neuroprotection. Engineering Ngb to observe structural and dynamic alterations associated with perturbation in ligand binding might reveal important structural determinants, and could shed light on key features related to its mechanism of action. Our results highlight the relevance of the CD loop and of Phe106 as distal and proximal controls involved in ligand binding in murine neuroglobin. We observed the effects of individual and combined mutations of the CD loop and Phe106 that conferred to Ngb higher CO binding velocities, which we correlate with the following structural observations: the mutant F106A shows, upon CO binding, a reduced heme sliding hindrance, with the heme present in a peculiar double conformation, whereas in the CD loop mutant "Gly-loop", the original network of interactions between the loop and the heme was abolished, enhancing binding via facilitated gating out of the distal His64. Finally, the double mutant, combining both mutations, showed a synergistic effect on CO binding rates. Resonance Raman spectroscopy and MD simulations support our findings on structural dynamics and heme interactions in wild type and mutated Ngbs

    Subcellular localization of the five members of the human steroid 5α-reductase family

    Get PDF
    In humans the steroid 5a-reductase (SRD5A) family comprises five integral membrane enzymes that carry out reduction of a double bond in lipidic substrates: D4-3-keto steroids, polyprenol and trans-enoyl CoA. The best-characterized reaction is the conversion of testosterone into the more potent dihydrotestosterone carried out by SRD5A1-2. Some controversy exists on their possible nuclear or endoplasmic reticulum localization. We report the cloning and transient expression in HeLa cells of the five members of the human steroid 5a-reductase family as both N- and Cterminus green fluorescent protein tagged protein constructs. Following the intrinsic fluorescence of the tag, we have determined that the subcellular localization of these enzymes is in the endoplasmic reticulum, upon expression in HeLa cells. The presence of the tag at either end of the polypeptide chain can affect protein expression and, in the case of trans enoyl-CoA reductase, it induces the formation of protein aggregates

    Genotoxicity assessment of piperitenone oxide: an in vitro and in silico evaluation

    Get PDF
    Piperitenone oxide, a natural flavouring agent also known as rotundifolone, has been studied for the genotoxicity assessment by an integrated in vitro and in silico experimental approach, including the bacterial reverse mutation assay, the micronucleus test, the comet assay and the computational prediction by Toxtree and VEGA tools. Under our experimental conditions, the monoterpene showed to induce both point mutations (i.e. frameshift, base-substitution and/or oxidative damage) and DNA damage (i.e. clastogenic or aneuploidic damage, or single-strand breaks). Computational prediction for piperitenone oxide agreed with the toxicological data, and highlighted the presence of the epoxide function and the α,β-unsaturated carbonyl as possible structural alerts for DNA damage. However, improving the toxicological libraries for natural occurring compounds is required in order to favour the applicability of in silico models to the toxicological predictions. Further in vivo evaluations are strictly needed in order to evaluate the role of the bioavailability of the substance and the metabolic fate on its genotoxicity profile. To the best of our knowledge, these data represent the first evaluation of the genotoxicity for this flavour compound and suggest the need of further studies to assess the safety of piperitenone oxide as either flavour or fragrance chemicals

    The Modified Kimura's Technique for the Treatment of Duodenal Atresia

    Get PDF
    Background/Purpose. Kimura's diamond-shaped-duodenoduodenostomy (DSD) is a known technique for the correction of congenital intrinsic duodenal obstruction. We present a modification of the technique and review the advantages of this new technique. Methods. From 1992 to 2006, 14 newborns were treated for duodenal atresia. We inverted the direction of the duodenal incisions: a longitudinal incision was made in the proximal duodenum while the distal was opened by transverse incision. Results. Our “inverted-diamond-shaped-duodenoduodenostomy” (i-DSD) allowed postoperative oral feeding to start on days 2 to 3, peripheral intravenous fluids discontinuity on days 3 to 8 (median values 3.6); time to achieve full oral feeds on days 8 to 12 (median values 9.4); the length of hospitalisation ranged from 10 and 14 days (median value 11.2). No complications related to the anastomosis, by Viz leakage, dehiscence, biliary stasis, or stenosis were observed. Conclusions. The i-DSD provides a safe procedure to protect the ampulla of Vater from injury and avoids any formation of a blind loop. The results show that patients who have i-DSD achieve full oral feeds in a very short time period and, consequently, the length of hospitalisation is also significantly reduced

    Intramural Ganglion Structures in Esophageal Atresia: A Morphologic and Immunohistochemical Study

    Get PDF
    Introduction and Aim. Disorders of esophageal motility causing dysphagia and gastroesophageal reflux are frequent in survivors to esophageal atresia (EA) and distal tracheoesophageal fistula (TEF). The aim of the present study was to investigate the histologic and immunohistochemical features in both esophageal atretic segments to further understand the nature of the motor disorders observed in these patients. Material and Methods. Esophageal specimens from 12 newborns with EA/TEF and 5 newborns dead of unrelated causes were examined. The specimens were fixed in 5% buffered formalin, included in paraffin and cut in 5 micron sections that were stained with hematoxilin and eosin (H and E), and immunohistochemical stainings for Actin, S-100 protein, Neurofilament, Neuron-Specific-Enolase, Chromogranin A and Peripherin were evaluated under the microscope. Results. In controls, the distribution of the neural elements was rather homogenous at both levels of the esophagus. In contrast, the atretic segments showed quantitative and qualitative differences between them with sparser nervous tissue in the distal one in comparison with the proximal one and with controls. Conclusions. These results further support the assumption that histomorphological alterations of the muscular and nervous elements within the esophageal wall might contribute to esophageal dysmotility in patients surviving neonatal operations for EA/TEF

    Diet-Related Attitudes, Beliefs, and Well-Being in Adolescents with a Vegetarian Lifestyle

    Get PDF
    Vegetarianism can meet healthy, ethical, or ecological values (such as equality and protection of animals or the environment). At the same time, it can represent a response to the need for self-determination in adolescence. Furthermore, some studies show vegetarians have greater depressive risk and a lower sense of body satisfaction. Considering the spread of non-meat diets in the Western world, researchers have investigated the benefits and risks to physical and psychological health. Despite this, few studies have been conducted on factors influencing adolescent's vegetarian diet-related attitudes. Through self-administered loosely structured interviews, this research investigated factors potentially associated with vegetarian choices in adolescence. It checked (a) gender differences in vegetarian choices; (b) religious, familial, ethical, or health factors implied in vegetarian choices; and (c) indicators of well-being among young vegetarians. The findings suggest that for our sample, non-vegetarians have lower scores on health-related questions than others, while for vegetarian adolescents, the benefits of vegetarianism mainly depend on their ethical stances, beliefs, and values. Conversely, it is unrelated to factors such as the desire to lose weight, dissatisfaction about one's body shape, or depressive feelings

    Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent.

    Get PDF
    OBJECTIVES: Drug delivery systems consisting of liposomes displaying a cell surface receptor-targeting peptide are being developed to specifically deliver chemotherapeutic drugs to tumors overexpressing a target receptor. This study addresses novel liposome composition approaches to specifically target tissues overexpressing bombesin (BN) receptors. METHODS: A new amphiphilic peptide derivative (MonY-BN) containing the BN(7-14) peptide, the DTPA (diethylenetriaminepentaacetate) chelating agent, a hydrophobic moiety with two C(18) alkyl chains, and polyethylene glycol spacers, has been synthesized by solid-phase methods. Liposomes have been generated by co-aggregation of MonY-BN with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The structural and biological properties of these new target-selective drug-delivery systems have been characterized. RESULTS: Liposomes with a DSPC/MonY-BN (97/3 molar ratio) composition showed a diameter of 145.5 ± 31.5 nm and a polydispersity index of 0.20 ± 0.05. High doxorubicin (Dox) loading was obtained with the remote pH gradient method using citrate as the inner buffer. Specific binding to PC-3 cells of DSPC/MonY-BN liposomes was obtained (2.7% ± 0.3%, at 37°C), compared with peptide-free DSPC liposomes (1.4% ± 0.2% at 37°C). Incubation of cells with DSPC/ MonY-BN/Dox showed significantly lower cell survival compared with DSPC/Dox-treated cells, in the presence of 100 ng/mL and 300 ng/mL drug amounts, in cytotoxicity experiments. Intravenous treatment of PC-3 xenograft-bearing mice with DSPC/MonY-BN/Dox at 10 mg/kg Dox dose produced higher tumour growth inhibition (60%) compared with nonspecific DSPC/ Dox liposomes (36%) relative to control animals. CONCLUSION: The structural and loading properties of DSPC/MonY-BN liposomes along with the observed in-vitro and in-vivo activity are encouraging for further development of this approach for target-specific cancer chemotherapy

    Proximal and distal control for ligand binding in neuroglobin: role of the CD loop and evidence for His64 gating

    Full text link
    Neuroglobin (Ngb) is predominantly expressed in neurons of the central and peripheral nervous systems and it clearly seems to be involved in neuroprotection. Engineering Ngb to observe structural and dynamic alterations associated with perturbation in ligand binding might reveal important structural determinants, and could shed light on key features related to its mechanism of action. Our results highlight the relevance of the CD loop and of Phe106 as distal and proximal controls involved in ligand binding in murine neuroglobin. We observed the effects of individual and combined mutations of the CD loop and Phe106 that conferred to Ngb higher CO binding velocities, which we correlate with the following structural observations: the mutant F106A shows, upon CO binding, a reduced heme sliding hindrance, with the heme present in a peculiar double conformation, whereas in the CD loop mutant “Gly-loop”, the original network of interactions between the loop and the heme was abolished, enhancing binding via facilitated gating out of the distal His64. Finally, the double mutant, combining both mutations, showed a synergistic effect on CO binding rates. Resonance Raman spectroscopy and MD simulations support our findings on structural dynamics and heme interactions in wild type and mutated Ngbs

    PLX4032, a selective BRAFV600E kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAFWT melanoma cells

    Get PDF
    BRAFV600E/K is a frequent mutationally active tumor-specific kinase in melanomas that is currently targeted for therapy by the specific inhibitor PLX4032. Our studies with melanoma tumor cells that are BRAFV600E/K and BRAFWT showed that, paradoxically, while PLX4032 inhibited ERK1/2 in the highly sensitive BRAFV600E/K, it activated the pathway in the resistant BRAFWT cells, via RAF1 activation, regardless of the status of mutations in NRAS or PTEN. The persistently active ERK1/2 triggered downstream effectors in BRAFWT melanoma cells and induced changes in the expression of a wide-spectrum of genes associated with cell cycle control. Furthermore, PLX4032 increased the rate of proliferation of growth factor-dependent NRAS Q61L mutant primary melanoma cells, reduced cell adherence and increased mobility of cells from advanced lesions. The results suggest that the drug can confer an advantage to BRAFWT primary and metastatic tumor cells in vivo and provide markers for monitoring clinical responses
    corecore