38 research outputs found

    Pathological serosa and node-based classification accurately predicts gastric cancer recurrence risk and outcome, and determines potential and limitation of a Japanese-style extensive surgery for Western patients: A prospective with quality control 10-year follow-up study

    Get PDF
    UICC classification accurately predicts overall survival but not recurrence-risk. We report here data of overall and first site-specific recurrence following curative surgery useful for the development of recurrence-oriented preventive target therapies. Patients who underwent resection for gastric cancer were stratified according to curability of surgery [curative (R0) vs non-curative resection], extent of surgery [limited (D1) vs extended (D2) node dissection] and pathological nodal/serosal status. The intent-to-treat principle, log-rank test and Cox regression analysis were used for statistical analysis of time-to-event (recurrence, death) endpoints. Curative resection only produced a chance of cure whereas survival was very poor following non-curative resection (P < 0.0001). For D2 R0 subgroup of patients, a pathological serosa and a node state-based classification into three groups, proved to be of clinical implication. Risk of recurrence after a median follow-up of 92 months was low among patients with both serosa and node-negative cancer (first group; 11%), moderate among those with either serosa or node-positive cancer (second group; 53%) and very high among those with both serosa and node-positive cancer (third group; 83%). In multivariate analysis, the relative risks of recurrence and death from gastric cancer among patients in the second and third groups, as compared to those in the first, were 7.07 (95% CI, 2.36–21.17;P  = 0.0002) and 16.19 (95% CI, 5.76–45.54;P < 0.0001) respectively. First site-specific recurrence analysis revealed: low rate of loco-regional recurrence alone (12%), serosa state determinant factor of the site-recurrence (peritoneal for serosa-positive and haematogenous for serosa-negative cancers) and dramatic increase of all types of recurrence by the presence of nodal metastases. Our findings demonstrate that a pathological serosa- and node-based classification is very simple and predicts accurately site-specific recurrence-risks. Furthermore they reveal that risk of recurrence following curative D2 surgery alone is low for serosa- and node-negative cancers, but very high in serosa- and node-positive cancers suggesting the need for new therapeutic strategies in this subgroup of patients. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Precise charged particle timing with the PICOSEC detector

    Get PDF
    The experimental requirements in near future accelerators (e.g. High Luminosity-LHC) has stimulated intense interestin development of detectors with high precision timing capabilities. With this as a goal, a new detection concept called PICOSEC,which is based to a “two-stage” MicroMegas detector coupled to a Cherenkov radiator equipped with a photocathode has beendeveloped. Results obtained with this new detector yield a time resolution of 24 ps for 150 GeV muons and 76 ps for single pho-toelectrons. In this paper we will report on the performance of the PICOSEC in test beams, as well as simulation studies andmodelling of its timing characteristicsPeer reviewe

    Precise timing with the PICOSEC-Micromegas detector

    Get PDF
    This work presents the concept of the PICOSEC-Micromegas de-tector to achieve a time resolution below 30 ps. PICOSEC consists of a two-stageMicromegas detector coupled to a Cherenkov radiator and equipped with a photo-cathode. The results from single-channel prototypes as well as the understanding ofthe detector in terms of detailed simulations and preliminary results from a multi-channel prototype are presented.Peer reviewe

    Progress on the PICOSEC-Micromegas Detector Development : Towards a precise timing, radiation hard, large-scale particle detector with segmented readout

    Get PDF
    This contribution describes the PICOSEC-Micromegas detector which achieves a time resolution below 25 ps. In this device the passage of a charged particle produces Cherenkov photons in a radiator, which then generate electrons in a photocathode and these photoelectrons enter a two-stage Micromegas with a reduced drift region and a typical anode region. The results from single-channel prototypes (demonstrating a time resolution of 24 ps for minimum ionizing particles, and 76 ps for single photoelectrons), the understanding of the detector in terms of detailed simulations and a phenomenological model, the issues of robustness and how they are tackled, and preliminary results from a multi-channel prototype are presented (demonstrating that a timing resolution similar to that of the single-channel device is feasible for all points across the area covered by a multi-channel device).Peer reviewe

    Precise timing and recent advancements with segmented anode PICOSEC Micromegas prototypes

    Full text link
    Timing information in current and future accelerator facilities is important for resolving objects (particle tracks, showers, etc.) in extreme large particles multiplicities on the detection systems. The PICOSEC Micromegas detector has demonstrated the ability to time 150\,GeV muons with a sub-25\,ps precision. Driven by detailed simulation studies and a phenomenological model which describes stochastically the dynamics of the signal formation, new PICOSEC designs were developed that significantly improve the timing performance of the detector. PICOSEC prototypes with reduced drift gap size (\sim\SI{119}{\micro\metre}) achieved a resolution of 45\,ps in timing single photons in laser beam tests (in comparison to 76\,ps of the standard PICOSEC detector). Towards large area detectors, multi-pad PICOSEC prototypes with segmented anodes has been developed and studied. Extensive tests in particle beams revealed that the multi-pad PICOSEC technology provides also very precise timing, even when the induced signal is shared among several neighbouring pads. Furthermore, new signal processing algorithms have been developed, which can be applied during data acquisition and provide real time, precise timing.Comment: 5 pages, 3 figures, 12th International Conference on Position Sensitive Detector

    New CAST limit on the axion-photon interaction

    Get PDF
    Hypothetical low-mass particles, such as axions, provide a compelling explanation for the dark matter in the universe. Such particles are expected to emerge abundantly from the hot interior of stars. To test this prediction, the CERN Axion Solar Telescope (CAST) uses a 9 T refurbished Large Hadron Collider test magnet directed towards the Sun. In the strong magnetic field, solar axions can be converted to X-ray photons which can be recorded by X-ray detectors. In the 2013-2015 run, thanks to low-background detectors and a new X-ray telescope, the signal-to-noise ratio was increased by about a factor of three. Here, we report the best limit on the axion-photon coupling strength (0.66 × 10 -10 GeV -1 at 95% confidence level) set by CAST, which now reaches similar levels to the most restrictive astrophysical bounds

    Timing performance of a Micro-Channel-Plate Photomultiplier Tube

    Get PDF
    The spatial dependence of the timing performance of the R3809U-50 Micro-Channel-Plate PMT (MCP-PMT) by Hamamatsu was studied in high energy muon beams. Particle position information is provided by a GEM tracker telescope, while timing is measured relative to a second MCP-PMT, identical in construction. In the inner part of the circular active area (radius r5.5 mm) the time resolution of the two MCP-PMTs combined is better than 10 ps. The signal amplitude decreases in the outer region due to less light reaching the photocathode, resulting in a worse time resolution. The observed radial dependence is in quantitative agreement with a dedicated simulation. With this characterization, the suitability of MCP-PMTs as t0 reference detectors has been validated.Peer reviewe

    Improved search for solar chameleons with a GridPix detector at CAST

    Get PDF
    We report on a new search for solar chameleons with the CERN Axion Solar Telescope (CAST). A GridPix detector was used to search for soft X-ray photons in the energy range from 200 eV to 10 keV from converted solar chameleons. No significant excess over the expected background has been observed in the data taken in 2014 and 2015. We set an improved limit on the chameleon photon coupling, beta(gamma) less than or similar to 5.7 x 10(10) for 1 < beta(m) < 10(6) at 95% C.L. improving our previous results by a factor two and for the first time reaching sensitivity below the solar luminosity bound for tachocline magnetic fields up to 12.5 T

    Charged particle timing at sub-25 picosecond precision : The PICOSEC detection concept

    Get PDF
    The PICOSEC detection concept consists in a “two-stage” Micromegas detector coupled to a Cherenkov radiator and equipped with a photocathode. A proof of concept has already been tested: a single-photoelectron response of 76 ps has been measured with a femtosecond UV laser at CEA/IRAMIS, while a time resolution of 24 ps with a mean yield of 10.4 photoelectrons has been measured for 150 GeV muons at the CERN SPS H4 secondary line. This work will present the main results of this prototype and the performance of the different detector configurations tested in 2016-18 beam campaigns: readouts (bulk, resistive, multipad) and photocathodes (metallic+CsI, pure metallic, diamond). Finally, the prospects for building a demonstrator based on PICOSEC detection concept for future experiments will be discussed. In particular, the scaling strategies for a large area coverage with a multichannel readout plane, the R&D on solid converters for building a robust photocathode and the different resistive configurations for a robust readout.Peer reviewe
    corecore