246 research outputs found
High-rate deposition of microcrystalline silicon in a large-area PECVD reactor and integration in tandem solar cells
We study the high-rate deposition of microcrystalline silicon in a large-area plasma-enhanced chemical-vapor-deposition (PECVD) reactor operated at 40.68 MHz, in the little-explored process conditions of high-pressure and high-silane concentration and depletion. Due to the long gas residence time in this process, the silane gas is efficiently depleted using moderate feed-in power density, thus facilitating up-scaling of the process to large surfaces. As observed in more traditional deposition processes, the deposition rate and performance of device-quality material are limited by the inter-electrode gap of the reactor. We significantly increase the cell performances by reducing this gap. X-ray diffractometry (XRD) and secondary ion mass spectroscopy (SIMS) are used to characterize the microcrystalline material deposited in the modified reactor at a rate of 1 nm/s. Comparison with a microcrystalline process at a low deposition rate demonstrates that the crystallographic orientation of the absorbing layer of the cell and the concentrations of contaminants are strongly correlated and dependent on the process. We use microcrystalline cells with absorber layer grown at a rate of 1 nm/s integrated as bottom cells in amorphous-microcrystalline (micromorph) tandem solar cells using the superstrate configuration. We report an initial efficiency of 10.8% (9.6% stabilized) for a tandem cell with 1.2 cm2 surface. Copyright # 2010 John Wiley & Sons, Ltd
Extracellular Superoxide Dismutase Expression in Papillary Thyroid Cancer Mesenchymal Stem/Stromal Cells Modulates Cancer Cell Growth and Migration
Tumor stroma-secreted growth factors, cytokines, and reactive oxygen species (ROS) influence tumor development from early stages to the metastasis phase. Previous studies have demonstrated downregulation of ROS-producing extracellular superoxide dismutase (SOD3) in thyroid cancer cell lines although according to recent data, the expression of SOD3 at physiological levels stimulates normal and cancer cell proliferation. Therefore, to analyze the expression of SOD3 in tumor stroma, we characterized stromal cells from the thyroid. We report mutually exclusive desmoplasia and inflammation in papillary and follicular thyroid cancers and the presence of multipotent mesenchymal stem/stromal cells (MSCs) in non-carcinogenic thyroids and papillary thyroid cancer (PTC). The phenotypic and differentiation characteristics of Thyroid MSCs and PTC MSCs were comparable with bone marrow MSCs. A molecular level analysis showed increased FIBROBLAST ACTIVATING PROTEIN, COLLAGEN 1 TYPE A1, TENASCIN, and SOD3 expression in PTC MSCs compared to Thyroid MSCs, suggesting the presence of MSCs with a fibrotic fingerprint in papillary thyroid cancer tumors and the autocrine-paracrine conversion of SOD3 expression, which was enhanced by cancer cells. Stromal SOD3 had a stimulatory effect on cancer cell growth and an inhibitory effect on cancer cell migration, thus indicating that SOD3 might be a novel player in thyroid tumor stroma
Electronics design of the RPC system for the OPERA muon spectrometer
The present document describes the front-end electronics of the RPC system that instruments the magnet muon spectrometer of the OPERA experiment. The main task of the OPERA spectrometer is to provide particle tracking
information for muon identification and simplify the matching between the Precision Trackers. As no trigger has been foreseen for the experiment, the spectrometer
electronics must be self-triggered with single-plane readout capability. Moreover, precision time information must be added within each event frame for off-line reconstruction. The read-out electronics is made of three different stages: the Front-End Boards (FEBs) system, the Controller Boards (CBs) system and the Trigger Boards(TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST-OR output of the input signals is also available for trigger plane signal generation. FEB signals are acquired by the CB system that provides the zero suppression and manages the communication to the DAQ and Slow Control. A Trigger Board allows to operate in both self-trigger mode (the FEBâs FAST-OR signal starts the plane acquisition) or in external-trigger mode (different conditions can be set on the FAST-OR signals generated from different planes)
Impact of secondary gas-phase reactions on microcrystalline silicon solar cells deposited at high rate
The role of secondary gas-phase reactions during plasma-enhanced chemical vapor deposition of microcrystalline silicon is a controversial subject. In this paper, we show that the enhancement of such reactions is associated with the improvement of material properties of absorber layers deposited at high constant rate. We detect powder, a product of secondary gas-phase reactions, via infrared laser absorption spectroscopy, laser light scattering, and optical emission spectroscopy. As the powder formation is increased, we measure a systematic improvement of device performance. This demonstrates that secondary gas-phase reactions are not detrimental to the material quality of microcrystalline silicon deposited at high rate. © 2010 American Institute of Physics
3D segmentation of intervertebral discs: from concept to the fabrication of patient-specific scaffolds
Aim: To develop a methodology for producing patient-specific scaffolds that mimic the annulus fibrosus (AF) of the human intervertebral disc (IVD) by means of combining magnetic resonance imaging (MRI) and 3D bioprinting. Methods: In order to obtain the AF 3D model from patientĂą s volumetric MRI dataset, the RheumaSCORE segmentation software was used. Polycaprolactone scaffolds with three different internal architectures were fabricated by 3D bioprinting, and characterized by micro-computed tomography.
Results: The demonstrated methodology of a geometry reconstruction pipeline enabled to successfully obtain an accurate AF model and 3D print patient-specific scaffolds with different internal architectures.
Conclusion: The results guide us towards patient-specific IVD tissue engineering as demonstrated a way of manufacturing personalized scaffolds using patient's MRI data.The authors would like to acknowledge the financial support provided by the Portuguese Foundation for Science and Technology (FCT) through the project EPIDisc (UTAPEXPL/BBB-ECT/0050/2014),
funded in the Framework of the âInternational Collaboratory for Emerging Technologies, CoLabâ, UT
justin|Portugal Program. FCT is also acknowledged for the PhD scholarship attributed to IF Cengiz (SFRH/
BD/99555/2014) and the financial support provided to J Silva-Correia (SFRH/BPD/100590/2014 and IF/00115/2015).
JM Oliveira also thanks the FCT for the funds provided under the program Investigador FCT (IF/00423/2012 and IF/01285/2015). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.
No writing assistance was utilized in the production of this manuscript.info:eu-repo/semantics/publishedVersio
LATEST DEVELOPMENTS ON MICROMORPH TANDEM CELLS AT IMT
The latest developments on micromorph tandem cells in small area laboratory and large area industrial PE-CVD systems are reviewed. We report on a 13.3% initial efficiency micromorph tandem cell deposited in our small area system. The development of an in-situ silicon oxide based intermediate reflector layer (SOIR) was essential in order to achieve such high efficiencies. We describe its detailed material structure and discuss optical management aspects for different cell configurations. In our large area industrial R&D reactor the highest efficiency so far obtained is a 11.0% initial efficiency micromorph tandem cell. We discuss in detail the role of pressure and silane depletion on the cell parameters of single junction microcrystalline cells and present efficiency trends decreasing from 8.2% to 7.0% with deposition rates increasing from 0.3 nm/s to 1.2 nm/s
The MU-RAY project: Volcano radiography with cosmic-ray muons
Cosmic-ray muon radiography is a technique for imaging the variation of density inside the top few 100m of a volcanic cone. With resolutions up to 10s of meters in optimal detection conditions, muon radiography can provide images of the top region of a volcano edifice with a resolution that is considerably better than that typically achieved with conventional methods. Such precise measurements are expected to provide us with information on anomalies in the rock density distribution, like those expected from dense lava conduits, low density magma supply paths or the compression with depth of the overlying soil. The MU-RAY project aims at the construction of muon telescopes and the development of new analysis tools for muon radiography. The telescopes are required to be able to work in harsh environment and to have low power consumption, good angular and time resolutions, large active area and modularity. The telescope consists of two XâY planes of 2x2 square meters area made by plastic scintillator strips of triangular shape. Each strip is read by a fast WLS fiber coupled to a silicon photomultiplier. The readout electronics is based on the SPIROC chip.Published120-1231.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveJCR Journalrestricte
Development of Micromorph Cells in Large-Area Industrial Reactor
The influences of the deposition pressure and silane depletion on the efficiency of single-junction microcrystalline silicon solar cells has been investigated. The efficiency is found to correlate with the ion energy which affects the density of states in the absorber material. Cell with efficiency of 7.3% at a deposition rate of 1 nm/s, and, respectively, 7.8% at 0.35 nm/s were deposited in R&D KAI M industrial reactor. Silicon oxide based intermediate reflector layers were developed in KAI reactor for incorporation in micromorph devices. Material with an index of refraction of 1.7 at 600 nm and low lateral conductivity were deposited. Micromorph devices incorporating these intermediate reflector layers were fabricated with initial efficiency of 12.3% at a deposition rate of 0.35 nm/s and 10.8% at 1 nm/s
Oscillations above the barrier in the fusion of 28Si + 28Si
Fusion cross sections of 28Si + 28Si have been measured in a range above the
barrier with a very small energy step (DeltaElab = 0.5 MeV). Regular
oscillations have been observed, best evidenced in the first derivative of the
energy-weighted excitation function. For the first time, quite different
behaviors (the appearance of oscillations and the trend of sub-barrier cross
sections) have been reproduced within the same theoretical frame, i.e., the
coupled-channel model using the shallow M3Y+repulsion potential. The
calculations suggest that channel couplings play an important role in the
appearance of the oscillations, and that the simple relation between a peak in
the derivative of the energy-weighted cross section and the height of a
centrifugal barrier is lost, and so is the interpretation of the second
derivative of the excitation function as a barrier distribution for this
system, at energies above the Coulomb barrier.Comment: submitted to Physics Letters
- âŠ