16 research outputs found

    COSMOS-Web: Intrinsically Luminous z\gtrsim10 Galaxy Candidates Test Early Stellar Mass Assembly

    Full text link
    We report the discovery of 15 exceptionally luminous 10z1410\lesssim z\lesssim14 candidate galaxies discovered in the first 0.28 deg2^2 of JWST/NIRCam imaging from the COSMOS-Web Survey. These sources span rest-frame UV magnitudes of 20.5>MUV>22-20.5>M_{\rm UV}>-22, and thus constitute the most intrinsically luminous z10z\gtrsim10 candidates identified by JWST to-date. Selected via NIRCam imaging with Hubble ACS/F814W, deep ground-based observations corroborate their detection and help significantly constrain their photometric redshifts. We analyze their spectral energy distributions using multiple open-source codes and evaluate the probability of low-redshift solutions; we conclude that 12/15 (80%) are likely genuine z10z\gtrsim10 sources and 3/15 (20%) likely low-redshift contaminants. Three of our z12z\sim12 candidates push the limits of early stellar mass assembly: they have estimated stellar masses 5×109M\sim5\times10^{9}\,M_\odot, implying an effective stellar baryon fraction of ϵ0.20.5\epsilon_{\star}\sim0.2-0.5, where ϵM/(fbMhalo)\epsilon_{\star}\equiv M_{\star}/(f_{b}M_{halo}). The assembly of such stellar reservoirs is made possible due to rapid, burst-driven star formation on timescales <<100\,Myr where the star-formation rate may far outpace the growth of the underlying dark matter halos. This is supported by the similar volume densities inferred for M1010MM_\star\sim10^{10}\,M_\odot galaxies relative to M109MM_\star\sim10^{9}\,M_\odot -- both about 10610^{-6} Mpc3^{-3} -- implying they live in halos of comparable mass. At such high redshifts, the duty cycle for starbursts would be of order unity, which could cause the observed change in the shape of the UVLF from a double powerlaw to Schechter at z8z\approx8. Spectroscopic redshift confirmation and ensuing constraints of their masses will be critical to understanding how, and if, such early massive galaxies push the limits of galaxy formation in Λ\LambdaCDM.Comment: 30 pages, 9 figures; ApJ submitte

    Uncovering a Massive z~7.65 Galaxy Hosting a Heavily Obscured Radio-Loud QSO Candidate in COSMOS-Web

    Full text link
    In this letter, we report the discovery of the highest redshift, heavily obscured, radio-loud QSO candidate selected using JWST NIRCam/MIRI, mid-IR, sub-mm, and radio imaging in the COSMOS-Web field. Using multi-frequency radio observations and mid-IR photometry, we identify a powerful, radio-loud (RL), growing supermassive black hole (SMBH) with significant spectral steepening of the radio SED (f1.32GHz2f_{1.32 \mathrm{GHz}} \sim 2 mJy, q24μm=1.1q_{24\mu m} = -1.1, α1.323GHz=1.2\alpha_{1.32-3\mathrm{GHz}}=-1.2, Δα=0.4\Delta \alpha = -0.4). In conjunction with ALMA, deep ground-based observations, ancillary space-based data, and the unprecedented resolution and sensitivity of JWST, we find no evidence of QSO contribution to the UV/optical/NIR data and thus infer heavy amounts of obscuration (NH>1023_{\mathrm{H}} > 10^{23} cm2^{-2}). Using the wealth of deep UV to sub-mm photometric data, we report a singular solution photo-z of zphotz_\mathrm{phot} = 7.650.3+0.4^{+0.4}_{-0.3} and estimate an extremely massive host-galaxy (logM=11.92±0.06M\log M_{\star} = 11.92 \pm 0.06\,\mathrm{M}_{\odot}). This source represents the furthest known obscured RL QSO candidate, and its level of obscuration aligns with the most representative but observationally scarce population of QSOs at these epochs.Comment: Submitted to ApJL, Comments welcom

    Unveiling the distant Universe: Characterizing z9z\ge9 Galaxies in the first epoch of COSMOS-Web

    Full text link
    We report the identification of 15 galaxy candidates at z9z\ge9 using the initial COSMOS-Web JWST observations over 77 arcmin2^2 through four NIRCam filters (F115W, F150W, F277W, F444W) with an overlap with MIRI (F770W) of 8.7 arcmin2^2. We fit the sample using several publicly-available SED fitting and photometric redshift codes and determine their redshifts between z=9.3z=9.3 and z=10.9z=10.9 (z=10.0\langle z\rangle=10.0), UV-magnitudes between MUV_{\rm UV} = -21.2 and -19.5 (with \langle MUV=20.2_{\rm UV}\rangle=-20.2) and rest-frame UV slopes (β=2.4\langle \beta\rangle=-2.4). These galaxies are, on average, more luminous than most z9z\ge9 candidates discovered by JWST so far in the literature, while exhibiting similar blue colors in their rest-frame UV. The rest-frame UV slopes derived from SED-fitting are blue (β\beta\sim[-2.0, -2.7]) without reaching extremely blue values as reported in other recent studies at these redshifts. The blue color is consistent with models that suggest the underlying stellar population is not yet fully enriched in metals like similarly luminous galaxies in the lower redshift Universe. The derived stellar masses with log10(\langle \log_{\rm 10} (M/_\star/M)89_\odot)\rangle\approx8-9 are not in tension with the standard Λ\LambdaCDM model and our measurement of the volume density of such UV luminous galaxies aligns well with previously measured values presented in the literature at z910z\sim9-10. Our sample of galaxies, although compact, are significantly resolved.Comment: Submitted to Ap

    A Near-infrared-faint, Far-infrared-luminous Dusty Galaxy at z ∼ 5 in COSMOS-Web

    Get PDF
    A growing number of far-infrared (FIR) bright sources completely invisible in deep extragalactic optical surveys hint at an elusive population of z &gt; 4 dusty, star-forming galaxies. Cycle 1 JWST surveys are now detecting their rest-frame optical light, which provides key insight into their stellar properties and statistical constraints on the population as a whole. This work presents the JWST Near Infrared Camera (NIRCam) counterpart from the COSMOS-Web survey to an FIR SCUBA-2 and Atacama Large Millimeter/submillimeter Array (ALMA) source, AzTECC71, which was previously undetected at wavelengths shorter than 850 μm. AzTECC71, among the reddest galaxies in COSMOS-Web with F277W − F444W ∼ 0.9, is undetected in NIRCam/F150W and F115W and fainter in F444W than other submillimeter galaxies identified in COSMOS-Web by 2-4 magnitudes. This is consistent with the system having both a lower stellar mass and higher redshift than the median dusty, star-forming galaxy. With deep ground- and space-based upper limits combined with detections in F277W, F444W, and the FIR including ALMA Band 6, we find a high probability (99%) that AzTECC71 is at z &gt; 4 with z phot = 5.7 − 0.7 + 0.8 . This galaxy is massive ( log M * / M ⊙ ∼ 10.7 ) and infrared-luminous ( log L IR / L ⊙ ∼ 12.7 ), comparable to other optically undetected but FIR-bright dusty, star-forming galaxies at z &gt; 4. This population of luminous, infrared galaxies at z &gt; 4 is largely unconstrained but comprises an important bridge between the most extreme dust-obscured galaxies and more typical high-redshift star-forming galaxies. If further FIR-selected galaxies that drop out of the F150W filter in COSMOS-Web have redshifts z &gt; 4 like AzTECC71, then the volume density of such sources may be ∼3-10 × greater than previously estimated.</p

    COSMOS-Web:Intrinsically Luminous z ≳ 10 Galaxy Candidates Test Early Stellar Mass Assembly

    Get PDF
    We report the discovery of 15 exceptionally luminous 10 ≲ z ≲ 14 candidate galaxies discovered in the first 0.28 deg2 of JWST/NIRCam imaging from the COSMOS-Web survey. These sources span rest-frame UV magnitudes of −20.5 &gt; M UV &gt; −22, and thus constitute the most intrinsically luminous z ≳ 10 candidates identified by JWST to date. Selected via NIRCam imaging, deep ground-based observations corroborate their detection and help significantly constrain their photometric redshifts. We analyze their spectral energy distributions using multiple open-source codes and evaluate the probability of low-redshift solutions; we conclude that 12/15 (80%) are likely genuine z ≳ 10 sources and 3/15 (20%) likely low-redshift contaminants. Three of our z ∼ 12 candidates push the limits of early stellar mass assembly: they have estimated stellar masses ∼ 5 × 109 M ⊙, implying an effective stellar baryon fraction of ϵ ⋆ ∼ 0.2−0.5, where ϵ ⋆ ≡ M ⋆/(f b M halo). The assembly of such stellar reservoirs is made possible due to rapid, burst-driven star formation on timescales &lt; 100 Myr where the star formation rate may far outpace the growth of the underlying dark matter halos. This is supported by the similar volume densities inferred for M ⋆ ∼ 1010 M ⊙ galaxies relative to M ⋆ ∼ 109 M ⊙—both about 10−6 Mpc−3—implying they live in halos of comparable mass. At such high redshifts, the duty cycle for starbursts would be of order unity, which could cause the observed change in the shape of the UV luminosity function from a double power law to a Schechter function at z ≈ 8. Spectroscopic redshift confirmation and ensuing constraints of their masses will be critical to understand how, and if, such early massive galaxies push the limits of galaxy formation in the Lambda cold dark matter paradigm.</p

    Two Massive, Compact, and Dust-obscured Candidate z ≃ 8 Galaxies Discovered by JWST

    Get PDF
    We present a search for extremely red, dust-obscured, z &gt; 7 galaxies with JWST/NIRCam+MIRI imaging over the first 20 arcmin2 of publicly available Cycle 1 data from the COSMOS-Web, CEERS, and PRIMER surveys. Based on their red color in F277W−F444W (∼2.5 mag) and detection in MIRI/F770W (∼25 mag), we identify two galaxies, COS-z8M1 and CEERS-z7M1, that have best-fit photometric redshifts of z = 8.4 − 0.4 + 0.3 and 7.6 − 0.1 + 0.1 , respectively. We perform spectral energy distribution fitting with a variety of codes (including bagpipes, prospector, beagle, and cigale) and find a &gt;95% probability that these indeed lie at z &gt; 7. Both sources are compact (R eff ≲ 200 pc) and highly obscured (A V ∼ 1.5-2.5) and, at our best-fit redshift estimates, likely have strong [O iii]+Hβ emission contributing to their 4.4 μm photometry. We estimate stellar masses of ∼1010 M ⊙ for both sources; by virtue of detection in MIRI at 7.7 μm, these measurements are robust to the inclusion of bright emission lines, for example, from an active galactic nucleus. We identify a marginal (2.9σ) Atacama Large Millimeter/submillimeter Array detection at 2 mm within 0.″5 of COS-z8M1, which, if real, would suggest a remarkably high IR luminosity of ∼1012 L ⊙. These two galaxies, if confirmed at z ∼ 8, would be extreme in their stellar and dust masses and may be representative of a substantial population of highly dust-obscured galaxies at cosmic dawn.</p

    Two Massive, Compact, and Dust-obscured Candidate z ≃ 8 Galaxies Discovered by JWST

    Get PDF
    We present a search for extremely red, dust-obscured, z &gt; 7 galaxies with JWST/NIRCam+MIRI imaging over the first 20 arcmin2 of publicly available Cycle 1 data from the COSMOS-Web, CEERS, and PRIMER surveys. Based on their red color in F277W−F444W (∼2.5 mag) and detection in MIRI/F770W (∼25 mag), we identify two galaxies, COS-z8M1 and CEERS-z7M1, that have best-fit photometric redshifts of z = 8.4 − 0.4 + 0.3 and 7.6 − 0.1 + 0.1 , respectively. We perform spectral energy distribution fitting with a variety of codes (including bagpipes, prospector, beagle, and cigale) and find a &gt;95% probability that these indeed lie at z &gt; 7. Both sources are compact (R eff ≲ 200 pc) and highly obscured (A V ∼ 1.5-2.5) and, at our best-fit redshift estimates, likely have strong [O iii]+Hβ emission contributing to their 4.4 μm photometry. We estimate stellar masses of ∼1010 M ⊙ for both sources; by virtue of detection in MIRI at 7.7 μm, these measurements are robust to the inclusion of bright emission lines, for example, from an active galactic nucleus. We identify a marginal (2.9σ) Atacama Large Millimeter/submillimeter Array detection at 2 mm within 0.″5 of COS-z8M1, which, if real, would suggest a remarkably high IR luminosity of ∼1012 L ⊙. These two galaxies, if confirmed at z ∼ 8, would be extreme in their stellar and dust masses and may be representative of a substantial population of highly dust-obscured galaxies at cosmic dawn.</p

    A Near-infrared-faint, Far-infrared-luminous Dusty Galaxy at z ∼ 5 in COSMOS-Web

    Get PDF
    A growing number of far-infrared (FIR) bright sources completely invisible in deep extragalactic optical surveys hint at an elusive population of z > 4 dusty, star-forming galaxies. Cycle 1 JWST surveys are now detecting their rest-frame optical light, which provides key insight into their stellar properties and statistical constraints on the population as a whole. This work presents the JWST Near Infrared Camera (NIRCam) counterpart from the COSMOS-Web survey to an FIR SCUBA-2 and Atacama Large Millimeter/submillimeter Array (ALMA) source, AzTECC71, which was previously undetected at wavelengths shorter than 850 μ m. AzTECC71, among the reddest galaxies in COSMOS-Web with F277W − F444W ∼ 0.9, is undetected in NIRCam/F150W and F115W and fainter in F444W than other submillimeter galaxies identified in COSMOS-Web by 2–4 magnitudes. This is consistent with the system having both a lower stellar mass and higher redshift than the median dusty, star-forming galaxy. With deep ground- and space-based upper limits combined with detections in F277W, F444W, and the FIR including ALMA Band 6, we find a high probability (99%) that AzTECC71 is at z > 4 with zphot=5.70.7+0.8{z}_{\mathrm{phot}}={5.7}_{-0.7}^{+0.8} . This galaxy is massive ( logM/M10.7\mathrm{log}\,{M}_{* }/{M}_{\odot }\sim 10.7 ) and infrared-luminous ( logLIR/L12.7\mathrm{log}\,{L}_{\mathrm{IR}}/{L}_{\odot }\sim 12.7 ), comparable to other optically undetected but FIR-bright dusty, star-forming galaxies at z > 4. This population of luminous, infrared galaxies at z > 4 is largely unconstrained but comprises an important bridge between the most extreme dust-obscured galaxies and more typical high-redshift star-forming galaxies. If further FIR-selected galaxies that drop out of the F150W filter in COSMOS-Web have redshifts z > 4 like AzTECC71, then the volume density of such sources may be ∼3–10 × greater than previously estimated
    corecore