35 research outputs found
Parameter-based evaluation of attentional impairments in schizophrenia and their modulation by prefrontal transcranial direct current stimulation
Background: Attentional dysfunctions constitute core cognitive symptoms in schizophrenia, but the precise underlying neurocognitive mechanisms remain to be elucidated.
Methods: In this randomized, double-blind, sham-controlled study, we applied, for the first time, a theoretically grounded modeling approach based on Bundesen’s Theory of Visual Attention (TVA) to (i) identify specific visual attentional parameters affected in schizophrenia and (ii) assess, as a proof of concept, the potential of single-dose anodal transcranial direct current stimulation (tDCS; 20 min, 2 mA) to the left dorsolateral prefrontal cortex to modulate these attentional parameters. To that end, attentional parameters were measured before (baseline), immediately after, and 24 h after the tDCS intervention in 20 schizophrenia patients and 20 healthy controls.
Results: At baseline, analyses revealed significantly reduced visual processing speed and visual short-term memory storage capacity in schizophrenia. A significant stimulation condition × time point interaction in the schizophrenia patient group indicated improved processing speed at the follow-up session only in the sham condition (a practice effect), whereas performance remained stable across the three time points in patients receiving verum stimulation. In healthy controls, anodal tDCS did not result in a significant change in attentional performance.
Conclusion: With regard to question (i) above, these findings are indicative of a processing speed and short-term memory deficit as primary sources of attentional deficits in schizophrenia. With regard to question (ii), the efficacy of single-dose anodal tDCS for improving (speed aspects of visual) cognition, it appears that prefrontal tDCS (at the settings used in the present study), rather than ameliorating the processing speed deficit in schizophrenia, actually may interfere with practice-dependent improvements in the rate of visual information uptake. Such potentially unexpected effects of tDCS ought to be taken into consideration when discussing its applicability in psychiatric populations. The study was registered at http://apps.who.int/trialsearch/Trial2.aspx?TrialID=DRKS00011665
Verification of analytical methods for GMO testing when implementing interlaboratory validated methods: Version 2
In the EU, method validation is an essential part of the process that regulates the introduction of new GMOs as food and/or feed into the market. When the inter-laboratory validation study is completed, the method is ready to be implemented in routine testing laboratories.
When implementing the new method, the laboratory has to verify that the method can be used for its intended purpose (method verification). The scope of this document is to provide guidance on how to carry out the method verification of inter-laboratory validated methods for the qualitative and quantitative detection of GMOs. Considering that the Polymerase Chain Reaction (PCR) is the method of choice in the EU for the identification and quantification of GMOs, this document refers exclusively to real time PCR. However, if novel methods are subsequently developed that fulfil legal requirements, then this document will be amended accordingly.JRC.F.5-Food and Feed Complianc
Enhanced Removal of Organic Dyes Using Co-Catalytic Ag-Modified ZnO and TiO2 Sol-Gel Photocatalysts
Zinc oxide and titanium dioxide semiconductor photocatalysts have been widely utilized in the last few decades for water treatment because of their high photocatalytic efficiency. Recently, a lot of researchers have focused on the improvement of the photocatalytic properties of catalysts through modifying and co-modifying them with different metals and nonmetals. These co-catalytic ions improve the photocatalytic activity of ZnO and TiO2 by reducing its energy band gap. This might be useful in wastewater treatment for the photocatalytic degradation of organic contaminants. In this study, we prepared semiconductor films that were surface-modified with Ag co-catalyst layers via the photo-fixation of Ag (I) ions with varied concentrations (10−2–10−4 M) in the water phase under UV illumination for the first time. The photocatalytic behavior was evaluated by the degradation of malachite green and methylene blue under UV and visible light irradiation. The ZnO/Ag and TiO2/Ag samples showed a faster degradation of malachite green compared to methylene blue due to the formation of stable intermediates by the reaction of OH radicals with the triarylmethane dye (C=C bond) during the photocatalysis. The co-catalytic-silver-modified films had a higher photocatalytic efficiency in comparison with the pure nanostructures. The dye photodegradation rate constants increased in the following order: pure films < films modified with Ag, 10−4 M < films modified with Ag10−3 M < films modified with Ag10−2 M. The Ag modification and the heterojunction of the composites contributed to trapping and transfer of the electrons. Therefore, the photogenerated charges had a longer lifetime, resulting in a strengthened photocatalytic ability of the ZnO/Ag and TiO2/Ag films
Enhanced Removal of Organic Dyes Using Co-Catalytic Ag-Modified ZnO and TiO<sub>2</sub> Sol-Gel Photocatalysts
Zinc oxide and titanium dioxide semiconductor photocatalysts have been widely utilized in the last few decades for water treatment because of their high photocatalytic efficiency. Recently, a lot of researchers have focused on the improvement of the photocatalytic properties of catalysts through modifying and co-modifying them with different metals and nonmetals. These co-catalytic ions improve the photocatalytic activity of ZnO and TiO2 by reducing its energy band gap. This might be useful in wastewater treatment for the photocatalytic degradation of organic contaminants. In this study, we prepared semiconductor films that were surface-modified with Ag co-catalyst layers via the photo-fixation of Ag (I) ions with varied concentrations (10−2–10−4 M) in the water phase under UV illumination for the first time. The photocatalytic behavior was evaluated by the degradation of malachite green and methylene blue under UV and visible light irradiation. The ZnO/Ag and TiO2/Ag samples showed a faster degradation of malachite green compared to methylene blue due to the formation of stable intermediates by the reaction of OH radicals with the triarylmethane dye (C=C bond) during the photocatalysis. The co-catalytic-silver-modified films had a higher photocatalytic efficiency in comparison with the pure nanostructures. The dye photodegradation rate constants increased in the following order: pure films −4 M −3 M −2 M. The Ag modification and the heterojunction of the composites contributed to trapping and transfer of the electrons. Therefore, the photogenerated charges had a longer lifetime, resulting in a strengthened photocatalytic ability of the ZnO/Ag and TiO2/Ag films
UGM characterization using DNA walking strategy
No abstract</p
Sugar beet seed architecture and genetics : influence on DNA-based GM quantification
GMO contaminations in seeds are quantified either as a proportion if transgenic seeds to the total number of seeds or as a proportion of transgenic genomes of the total genome number. We quantified the DNA copy numbers in the embryo and pericarp of sugar beet seeds from three diploid and three triploid varieties. The embryo appears to contain more DNA than the pericarp although it has a lower mass proportion in the seed. The embryo is formed after a fusion of the female and male gametes and contains genome sets from both parents whilst the pericarp stems from the female parent. We estimated the influence of the origin of the transgene and the ploidy of the embryo on the transgenic genome proportion in hemizygous sugar beet seeds and compared transgenic genome numbers with transgenic seed numbers. The results show a significant influence of the biological factors on the transgenic genome proportions which further contributes to the impossibility to convert transgenic genomes in transgenic seeds and vice versa
Development of a Taxon-Specific Real-Time PCR Method Targeting the Bacillus subtilis Group to Strengthen the Control of Genetically Modified Bacteria in Fermentation Products
Most of the bacteria that are used to produce fermentation products, such as enzymes, additives and flavorings, belong to the Bacillus subtilis group. Recently, unexpected contaminations with unauthorized genetically modified (GM) bacteria (viable cells and associated DNA) that were carrying antimicrobial resistance (AMR) genes was noticed in several microbial fermentation products that have been commercialized on the food and feed market. These contaminations consisted of GM Bacillus species belonging to the B. subtilis group. In order to screen for the potential presence of such contaminations, in this study we have developed a new real-time PCR method targeting the B. subtilis group, including B. subtilis, B. licheniformis, B. amyloliquefaciens and B. velezensis. The method’s performance was successfully assessed as specific and sensitive, complying with the Minimum Performance Requirements for Analytical Methods of GMO Testing that is used as a standard by the GMO enforcement laboratories. The method’s applicability was also tested on 25 commercial microbial fermentation products. In addition, this method was developed to be compatible with the PCR-based strategy that was recently developed for the detection of unauthorized GM bacteria. This taxon-specific method allows the strengthening of the set of screening markers that are targeting key sequences that are frequently found in GM bacteria (AMR genes and shuttle vector), reinforcing control over the food and feed chain in order to guarantee its safety and traceability
Guidance on the selection and use of DNA extraction methods
DNA extraction is at the forefront of further analytical measurements on DNA targets and affects the downstream results. This report from the European Network of GMO Laboratories (ENGL) provides guidance on the selection and use of fit-for-purpose DNA extraction methods. It focusses on DNA extraction in the context of official controls on the presence and content of genetically modified organisms in food and feed. It provides guidance on protocols and selection support systems, validation approaches, assessment of DNA quality parameters and examples of practical solutions derived from collective experiences. There are many variations on the theme of DNA extraction, but there is no single protocol that works adequately across all food and feed matrices. Before using a new method in the laboratory, or in case of modifications to a protocol, validation or verification is needed to show that a chosen method is fit for purpose for use in routine analysis. This guidance is aimed to help the DNA analysis laboratories in fulfilling the standardisation requirements and support their daily operations
Gene stacking in transgenic plants: towards compliance between definitions, terminology and detection within the EU regulatory framework
The combination or stacking of different traits or genes in plants is rapidly gaining popularity in biotech crop production. Here we review the existing terminology regarding gene stacking in plants, and its implications in relation to genetics, biosafety, detectability and European regulations. Different methods of production of stacked gene traits, as well as the status of their cultivation and approval, are reviewed. Related to the different techniques of transformation and production, including classical breeding, and to differences in global authorization and commercialization practices, there are many types, definitions, and perceptions of stacking. These include: (1) stacking of traits and (2) stacking of events, which are the most widely accepted perceptions of stacking, and (3) stacking of genes, which from the analytical and traceability point of view may be a more appropriate perception. These differences in perceptions and definitions are discussed, as are their implications for analytical detection and regulatory compliance according to (in particular) European Union (EU) regulations. A comprehensive terminology regarding gene stacking with regulatory relevance is proposed. The haploid genome equivalent is proposed as the prevailing unit of measurement at all stages throughout the chain, in order to ensure that terminology and definitions of gene stacks are adapted to analytical detection, traceability, and compliance with EU regulations
Development of a Taxon-Specific Real-Time PCR Method Targeting the <i>Bacillus subtilis</i> Group to Strengthen the Control of Genetically Modified Bacteria in Fermentation Products
Most of the bacteria that are used to produce fermentation products, such as enzymes, additives and flavorings, belong to the Bacillus subtilis group. Recently, unexpected contaminations with unauthorized genetically modified (GM) bacteria (viable cells and associated DNA) that were carrying antimicrobial resistance (AMR) genes was noticed in several microbial fermentation products that have been commercialized on the food and feed market. These contaminations consisted of GM Bacillus species belonging to the B. subtilis group. In order to screen for the potential presence of such contaminations, in this study we have developed a new real-time PCR method targeting the B. subtilis group, including B. subtilis, B. licheniformis, B. amyloliquefaciens and B. velezensis. The method’s performance was successfully assessed as specific and sensitive, complying with the Minimum Performance Requirements for Analytical Methods of GMO Testing that is used as a standard by the GMO enforcement laboratories. The method’s applicability was also tested on 25 commercial microbial fermentation products. In addition, this method was developed to be compatible with the PCR-based strategy that was recently developed for the detection of unauthorized GM bacteria. This taxon-specific method allows the strengthening of the set of screening markers that are targeting key sequences that are frequently found in GM bacteria (AMR genes and shuttle vector), reinforcing control over the food and feed chain in order to guarantee its safety and traceability