995 research outputs found

    Evaluation of T cell immunity against human cytomegalovirus: Impact on patient management and risk assessment of vertical transmission

    Get PDF
    Cytomegalovirus (CMV) is one of the most common infectious agents, infecting the general population at an early age without causing morbidity most of the time. However, on particular occasions, it may represent a serious risk, as active infection is associated with rejection and disease after solid organ transplantation or fetal transmission during pregnancy. Several methods for CMV diagnosis are available on the market, but because infection is so common, careful selection is needed to discriminate primary infection from reactivation. This review focuses on methods based on CMV-specific T cell reactivity to help monitor the consequences of CMV infection/reactivation in specific categories of patients. This review makes an attempt at discussing the pros and cons of the methods available

    Tweaking Mesenchymal Stem/Progenitor Cell Immunomodulatory Properties with Viral Vectors Delivering Cytokines

    Get PDF
    Mesenchymal Stem Cells (MSCs) can be found in various body sites. Their main role is to differentiate into cartilage, bone, muscle, and fat cells to allow tissue maintenance and repair. During inflammation, MSCs exhibit important immunomodulatory properties that are not constitutive, but require activation, upon which they may exert immunosuppressive functions. MSCs are defined as "sensors of inflammation" since they modulate their ability of interfering with the immune system both in vitro and in vivo upon interaction with different factors. MSCs may influence immune responses through different mechanisms, such as direct cell-to-cell contact, release of soluble factors, and through the induction of anergy and apoptosis. Human MSCs are defined as plastic-adherent cells expressing specific surface molecules. Lack of MHC class II antigens makes them appealing as allogeneic tools for the therapy of both autoimmune diseases and cancer. MSC therapeutic potential could be highly enhanced by the expression of exogenous cytokines provided by transduction with viral vectors. In this review, we attempt to summarize the results of a great number of in vitro and in vivo studies aimed at improving the ability of MSCs as immunomodulators in the therapy of autoimmune, degenerative diseases and cancer. We will also compare results obtained with different vectors to deliver heterologous genes to these cells

    Histomorphometric evaluation of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial "critical size" defect

    Get PDF
    Objective: The aim of this study was to test specific stem cells that could enhance bone formation in combination with specific scaffolds. Methods: Dental Pulp Stem Cells (DPSCs) were seeded with Granular Deproteinized Bovine Bone (GDPB) or Beta-Tricalcium Phosphate (ß-TCP) in a rat model of calvarial "critical size" defect. DPSCs were isolated from permanent human teeth, obtained and characterized using specific stem cells markers (Nanog and Oct-4) by real time-PCR and immunofluorescence. Cells were differentiated for 10-15 days towards the osteoblastic phenotype with 100μM L-ascorbic acid, added every day in culture medium and 20 vol. percentage of FBS in α-MEM medium. Osteogenic commitment was evaluated with real time-PCR by measuring the expression of specific markers (osteonectin and runx2). When a sufficient cell number was obtained, DPSCs were trypsinized, washed in culture medium and seeded onto the GDPB and ß-TCP scaffold sat a density of 0.5-1×106 cells/scaffold. Two bilateral critical-size circular defects (5 mm diameter; 1 mm thickness) were created from the parietal bone of the 8 athymic T-cell deficient nude rats. One cranial defect for each rat was filled with the scaffold alone and the other defect with the scaffold seeded with stem cells. After 12 weeks post-surgery animals were euthanized and histomorphometric analysis was performed. Differences between groups were analyzed by one-way analysis of variance (ANOVA) followed by Fisher's Protected Least Significant Difference (PLSD) post-hoc test. A p-value <0.05 was considered statistically significant. Results: GDPB group presented higher percentage of lamellar bone than that of GDPB/DPSC, ß-TCP alone had lower levels as compared to ß-TCP/DPSC. The addition of stem cells significantly increased woven bone formation in both scaffold-based implants, although still higher in GDPB based implants. Conclusion: Our findings indicate that GDPB and ß-TCP used as scaffold to induce bone regeneration may benefit from adding DPSC to tissue-engineered constructs

    Evolution of viruses and the emergence of SARS-CoV-2 variants

    Get PDF
    Life implies adaptation. This is one of the fundamental principles that has permitted most living species to survive through ages in an ever-changing environment. Spontaneously occurring events have shaped also virus populations and their fitness. Thanks to their plasticity, viruses have thrived in extremely dissimilar conditions. Unsurprisingly, SARS-CoV-2, the etiological agent of COVID-19, is no exception. Thanks to an unprecedented rate of molecular tracing and sequence scrutiny, the virus was followed in all its changes and shown to evolve in such a way as to possibly determine subsequent waves of infection after the first global and massive outbreak. This review illustrates the major modifications occurred to the virus since its discovery. We describe the potential advantages that these changes conveyed as regards SARS-CoV-2 transmissibility, resistance to host innate and adaptive barriers and molecular diagnosis

    Acid ceramidase controls apoptosis and increases autophagy in human melanoma cells treated with doxorubicin

    Get PDF
    Acid ceramidase (AC) is a lysosomal hydrolase encoded by the ASAH1 gene, which cleaves ceramides into sphingosine and fatty acid. AC is expressed at high levels in most human melanoma cell lines and may confer resistance against chemotherapeutic agents. One such agent, doxorubicin, was shown to increase ceramide levels in melanoma cells. Ceramides contribute to the regulation of autophagy and apoptosis. Here we investigated the impact of AC ablation via CRISPR-Cas9 gene editing on the response of A375 melanoma cells to doxorubicin. We found that doxorubicin activates the autophagic response in wild-type A375 cells, which effectively resist apoptotic cell death. In striking contrast, doxorubicin fails to stimulate autophagy in A375 AC-null cells, which rapidly undergo apoptosis when exposed to the drug. The present work highlights changes that affect melanoma cells during incubation with doxorubicin, in A375 melanoma cells lacking AC. We found that the remarkable reduction in recovery rate after doxorubicin treatment is strictly associated with the impairment of autophagy, that forces the AC-inhibited cells into apoptotic path

    Co-Transplantation of endothelial progenitor cells and pancreatic islets to induce long-lasting normoglycemia in streptozotocin-treated diabetic rats

    Get PDF
    Graft vascularization is a crucial step to obtain stable normoglycemia in pancreatic islet transplantation. Endothelial progenitor cells (EPCs) contribute to neoangiogenesis and to the revascularization process during ischaemic events and play a key role in the response to pancreatic islet injury. In this work we co-transplanted EPCs and islets in the portal vein of chemically-induced diabetic rats to restore islet vascularization and to improve graft survival. Syngenic islets were transplanted, either alone or with EPCs derived from green fluorescent protein (GFP) transgenic rats, into the portal vein of streptozotocin-induced diabetic rats. Blood glucose levels were monitored and intraperitoneal glucose tolerance tests were performed. Real time-PCR was carried out to evaluate the gene expression of angiogenic factors. Diabetic-induced rats showed long-lasting (6 months) normoglycemia upon co-transplantation of syngenic islets and EPCs. After 3–5 days from transplantation, hyperglycaemic levels dropped to normal values and lasted unmodified as long as they were checked. Further, glucose tolerance tests revealed the animals' ability to produce insulin on-demand as indexed by a prompt response in blood glucose clearance. Graft neovascularization was evaluated by immunohistochemistry: for the first time the measure of endothelial thickness revealed a donor-EPC-related neovascularization supporting viable islets up to six months after transplant. Our results highlight the importance of a newly formed viable vascular network together with pancreatic islets to provide de novo adequate supply in order to obtain enduring normoglycemia and prevent diabetes-related long-term health hazards

    Magnetic carbon nanotubes: a new tool for shepherding mesenchymal stem cells by magnetic fields

    Get PDF
    We investigated the interaction between magnetic carbon nanotubes (CNTs) and mesenchymal stem cells (MSCs), and their ability to guide these intravenously injected cells in living rats by using an external magnetic field. MATERIALS & METHODS: Multiwalled CNTs were used to treat MSCs derived from rat bone marrow. Cytotoxicity induced by nanotubes was studied using the WST-1 proliferation and Hoechest 33258 apoptosis assays. The effects of nanotubes on MSCs were evaluated by monitoring the effects on cellular growth rates, immunophenotyping and differentiation, and on the arrangement of cytoskeletal actin. MSCs loaded with nanotubes were injected in vivo in the portal vein of rats driving their localization in the liver by magnetic field. An histological analysis was performed on the liver, lungs and kidneys of all animals. RESULTS: CNTs did not affect cell viability and their ability to differentiate in osteocytes and adipocytes. Both the CNTs and the magnetic field did not alter the cell growth rate, phenotype and cytoskeletal conformation. CNTs, when exposed to magnetic fields, are able to shepherd MSCs towards the magnetic source in vitro. Moreover, the application of a magnetic field alters the biodistribution of CNT-labelled MSCs after intravenous injection into rats, increasing the accumulation of cells into the target organ (liver). CONCLUSION: Multiwalled CNTs hold the potential for use as nanodevices to improve therapeutic protocols for transplantation and homing of stem cells in vivo. This could pave the way for the development of new strategies for the manipulation/guidance of MSCs in regenerative medicine and cell transplantation

    The AGMA1 poly(amidoamine) inhibits the infectivity of herpes simplex virus in cell lines, in human cervicovaginal histocultures, and in vaginally infected mice

    Get PDF
    The development of topical microbicides is a valid approach to protect the genital mucosa from sexually transmitted infections that cannot be contained with effective vaccination, like HSV and HIV infections. A suitable target of microbicides is the interaction between viral proteins and cell surface heparan sulfate proteoglycans (HSPGs). AGMA1 is a prevailingly cationic agmatine-containing polyamidoamine polymer previously shown to inhibit HSPGs dependent viruses, including HSV-1, HSV-2, and HPV-16. The aim of this study was to elucidate the mechanism of action of AGMA1 against HSV infection and assess its antiviral efficacy and biocompatibility in preclinical models. The results show AGMA1 to be a non-toxic inhibitor of HSV infectivity in cell cultures and human cervicovaginal histocultures. Moreover, it significantly reduced the burden of infection of HSV-2 genital infection in mice. The investigation of the mechanism of action revealed that AGMA1 reduces cells susceptibility to virus infection by binding to cell surface HSPGs thereby preventing HSV attachment. This study indicates that AGMA1 is a promising candidate for the development of a topical microbicide to prevent sexually transmitted HSV infections

    CRISPR/Cas9 Ablation of Integrated HIV-1 Accumulates Proviral DNA Circles with Reformed Long Terminal Repeats

    Get PDF
    Gene editing may be used to excise the human immunodeficiency virus type 1 (HIV-1) provirus from the host cell genome, possibly eradicating the infection. Here, using cells acutely or latently infected by HIV-1 and treated with long terminal repeat (LTR)-targeting CRISPR/Cas9, we show that the excised HIV-1 provirus persists for a few weeks and may rearrange in circular molecules. Although circular proviral DNA is naturally formed during HIV-1 replication, we observed that gene editing might increase proviral DNA circles with restored LTRs. These extrachromosomal elements were recovered and probed for residual activity through their transfection in uninfected cells. We discovered that they can be transcriptionally active in the presence of Tat and Rev. Although confirming that gene editing is a powerful tool to eradicate HIV-1 infection, this work highlights that, to achieve this goal, the LTRs must be cleaved in several pieces to avoid residual activity and minimize the risk of reintegration in the context of genomic instability, possibly caused by the off-target activity of Cas9. IMPORTANCE The excision of HIV-1 provirus from the host cell genome has proven feasible in vitro and, to some extent, in vivo. Among the different approaches, CRISPR/Cas9 is the most promising tool for gene editing. The present study underlines the remarkable effectiveness of CRISPR/Cas9 in removing the HIV-1 provirus from infected cells and investigates the fate of the excised HIV-1 genome. This study demonstrates that the free provirus may persist in the cell after editing and in appropriate circumstances may reactivate. As an episome, it might be transcriptionally active, especially in the presence of Tat and Rev. The persistence of the HIV-1 episome was strongly decreased by gene editing with multiple targets. Although gene editing has the potential to eradicate HIV-1 infection, this work highlights a potential issue that warrants further investigation

    Entry inhibition of HSV-1 and -2 protects mice from viral lethal challenge

    Get PDF
    The present study focused on inhibition of HSV-1 and -2 replication and pathogenesis in vitro and in vivo, through the selective targeting of the envelope glycoprotein D. Firstly, a human monoclonal antibody (Hu-mAb#33) was identified that could neutralise both HSV-1 and -2 at nM concentrations, including clinical isolates from patients affected by different clinical manifestations and featuring different susceptibility to acyclovir in vitro. Secondly, the potency of inhibition of both infection by cell-free viruses and cell-to-cell virus transmission was also assessed. Finally, mice receiving a single systemic injection of Hu-mAb#33 were protected from death and severe clinical manifestations following both ocular and vaginal HSV-1 and -2 lethal challenge. These results pave the way for further studies reassessing the importance of HSV entry as a novel target for therapeutic intervention and inhibition of cell-to-cell virus transmission
    • …
    corecore