1,315 research outputs found
On the Maximal Invariant Statistic for Adaptive Radar Detection in Partially-Homogeneous Disturbance with Persymmetric Covariance
This letter deals with the problem of adaptive signal detection in
partially-homogeneous and persymmetric Gaussian disturbance within the
framework of invariance theory. First, a suitable group of transformations
leaving the problem invariant is introduced and the Maximal Invariant Statistic
(MIS) is derived. Then, it is shown that the (Two-step) Generalized-Likelihood
Ratio test, Rao and Wald tests can be all expressed in terms of the MIS, thus
proving that they all ensure a Constant False-Alarm Rate (CFAR).Comment: submitted for journal publicatio
Screening Polarimetric SAR Data via Geometric Barycenters for Covariance Symmetry Classification
This letter proposes a robust framework for polarimetric covariance symmetries classification in Synthetic Aperture Radar (SAR) images applying a pre-screening on the data looks before they are used to perform inferences. More specifically, the devised method improves the performance of a previous work based on the exploitation of the special structures assumed by the covariance/coherence matrix when symmetric scattering mechanisms dominate the polarimetric returns. To do this, the algorithm selects first the most homogeneous data through the cancellation of those sharing the highest Generalized Inner Product (GIP) values computed with the use of the geometric barycenters. Then, the procedure based on Model Order Selection (MOS) developed in the homogeneous case is applied on the filtered data. The conducted tests show the potentiality of the proposed method in correctly classifying the observed scene of L-band real-recorded SAR data with respect to its standard counterpart
A multi-family GLRT for detection in polarimetric SAR images
This paper deals with detection from multipolarization SAR images. The problem is cast in terms of a composite hypothesis test aimed at discriminating between the Polarimetric Covariance Matrix (PCM) equality (absence of target in the tested region) and the situation where the region under test exhibits a PCM with at least an ordered eigenvalue smaller than that of a reference covariance. This last setup reflects the physical condition where the back scattering associated with the target leads to a signal, in some eigen-directions, weaker than the one gathered from a reference area where it is apriori known the absence of targets. A Multi-family Generalized Likelihood Ratio Test (MGLRT) approach is pursued to come up with an adaptive detector ensuring the Constant False Alarm Rate (CFAR) property. At the analysis stage, the behaviour of the new architecture is investigated in comparison with a benchmark (but non-implementable) and some other adaptive sub-optimum detectors available in open literature. The study, conducted in the presence of both simulated and real data, confirms the practical effectiveness of the new approach
Dominant Scattering Mechanism Identification from Quad-Pol-SAR Data Analysis
Polarimetric decompositions are used to separate scatterers and identify their physical parameters by analyzing backscattering, coherence, or covariance matrices. Each cell within polarimetric SAR data is seen as a coherent or incoherent combination of different scattering mechanisms. However, targets are not perfectly characterized by these matrices due to the presence of noise components. The main objective of this study is to remedy the latest issue through proper noise effect elimination. Hence, we propose the re-estimation of the coherence matrix, by incorporating a processing phase that searches for the number of elementary scattering mechanisms in each cell. This first step is based on the eigenvalues, which exploit the advantage of polarization basis independent of the eigenvectors. In the second step, a reduced space is defined by the eigenvectors selected, according to the cases of the first step, as those contributing to the construction of the target, excluding those judged to contribute to noise. The characteristic vector and/or the coherence matrix of the average target is then reconstructed in this new space in three different ways: summation of the elementary coherence matrices, applying Bernoulli's probability law, and orthogonal projection on the reduced space. Finally, the Freeman Durden polarimetric decomposition and the H-alpha Wishart classification are used to show the effectiveness of the process in terms of dominant scattering mechanism identification. Their application on simulated data and on fully-polarized RadarSat-2 images of the city of Algiers attests to the performance of the proposed methodology to improve the identification of dominant scattering mechanisms
A Machine Learning-Based Approach for Audio Signals Classification using Chebychev Moments and Mel-Coefficients
This paper proposes a machine learning-based architecture for audio signals classification based on a joint exploitation of the Chebychev moments and the Mel-Frequency Cepstrum Coefficients. The procedure starts with the computation of the Mel-spectrogram of the recorded audio signals; then, Chebychev moments are obtained projecting the Cadence Frequency Diagram derived from the Mel-spectrogram into the base of Chebychev moments. These moments are then concatenated with the Mel-Frequency Cepstrum Coefficients to form the final feature vector. By doing so, the architecture exploits the peculiarities of the discrete Chebychev moments such as their symmetry characteristics. The effectiveness of the procedure is assessed on two challenging datasets, UrbanSound8K and ESC-50
A joint coregistration of rotated multitemporal SAR images based on the cross-cross-correlation
Accurate synthetic aperture radar (SAR) images coregistration is on the base of several remote sensing applications, such as interferometry, change detection, etc. This paper proposes a new algorithm for jointly coregister a stack of multitemporal SAR images exploiting the cross-correlations computed for each couple of patches' cross-correlation. By doing so, the method is capable of exploit also the respective misregistration information between the slave during the estimation process. This methodology is applied to improve the performance of the constrained Least Squares (CLS) optimization method that does not account for the reciprocal information related to the slaves. Tests on real-recorded data shown the benefits of the proposed method in terms of root mean square error (RMSE) for images affected by respective rotations
Bone Marrow Osteoblastic Niche: A New Model to Study Physiological Regulation of Megakaryopoiesis
BACKGROUND: The mechanism by which megakaryocytes (Mks) proliferate, differentiate, and release platelets into circulation are not well understood. Growing evidence indicates that a complex regulatory mechanism, involving cellular interactions, composition of the extracellular matrix and physical parameters such as oxygen tension, may contribute to the quiescent or permissive microenvironment related to Mk differentiation and maturation within the bone marrow. METHODOLOGY/PRINCIPAL FINDINGS: Differentiating human mesenchymal stem cells (hMSCs) into osteoblasts (hOSTs), we established an in vitro model for the osteoblastic niche. We demonstrated for the first time that the combination of HSCs, Mks and hypoxia sustain and promote bone formation by increasing type I collagen release from hOSTs and enhancing its fibrillar organization, as revealed by second harmonic generation microscopy. Through co-culture, we demonstrated that direct cell-cell contact modulates Mk maturation and differentiation. In particular we showed that low oxygen tension and direct interaction of hematopoietic stem cells (HSCs) with hOSTs inhibits Mk maturation and proplatelet formation (PPF). This regulatory mechanism was dependent on the fibrillar structure of type I collagen released by hOSTs and on the resulting engagement of the alpha2beta1 integrin. In contrast, normoxic conditions and the direct interaction of HSCs with undifferentiated hMSCs promoted Mk maturation and PPF, through a mechanism involving the VCAM-1 pathway. CONCLUSIONS/SIGNIFICANCE: By combining cellular, physical and biochemical parameters, we mimicked an in vitro model of the osteoblastic niche that provides a physiological quiescent microenvironment where Mk differentiation and PPF are prevented. These findings serve as an important step in developing suitable in vitro systems to use for the study and manipulation of Mk differentiation and maturation in both normal and diseased states
Methods and advanced Equipment for Simulation and Treatment in Radiation Oncology: programa MAESTRO
n/
EFSUMB Recommendations and Guidelines for Gastrointestinal Ultrasound - Part 1: Examination Techniques and Normal Findings (Short version)
Abstract
â–¼
In October 2014 the European Federation of Societies
for Ultrasound in Medicine and Biology formed
a Gastrointestinal Ultrasound (GIUS) task force
group to promote the use of GIUS in a clinical setting.
One of the main objectives of the task force
group was to develop clinical recommendations
and guidelines for the use of GIUS under the auspices
of EFSUMB. The first part, gives an overview of
the examination techniques for GIUS recommended
by experts in the field. It also presents the
current evidence for the interpretation of normal
sonoanatomical and physiological features as examined
with different ultrasound modalities
- …