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Screening Polarimetric SAR Data via Geometric
Barycenters for Covariance Symmetry Classification
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Abstract— This letter proposes a robust framework for polari-
metric covariance symmetries classification in synthetic aperture
radar (SAR) images applying a prescreening on the data looks
before they are used to perform inferences. More specifically,
the devised method improves the performance of a previous
work based on the exploitation of the special structures assumed
by the covariance/coherence matrix when symmetric scattering
mechanisms dominate the polarimetric returns. To do this,
the algorithm selects first the most homogeneous data through
the cancellation of those sharing the highest generalized inner
product (GIP) values computed with the use of the geometric
barycenters. Then, the procedure based on model order selec-
tion (MOS) developed in the homogeneous case is applied on
the filtered data. The conducted tests show the potentiality of
the proposed method in correctly classifying the observed scene
of L-band real-recorded SAR data with respect to its standard
counterpart.

Index Terms— Covariance and coherence scattering matrix,
geometric barycenter, information geometry, outlier cancella-
tion, polarimetric synthetic aperture radar (SAR), unsupervised
classification.

I. INTRODUCTION

POLARIMETRY is a remarkable tool often used in the
context of Synthetic aperture radar (SAR) processing

and application. In fact, a multitude of research works using
polarimetry to enhance detection and/or classification capabil-
ities are continuously published. In this respect, the polari-
metric covariance/coherence matrix finds its space of action
in many algorithms or procedures to extract more and more
information about the observed scene [1], [2], [3], [4], [5],
[6], [7], [8], [9]. Nghiem et al. [2] have shown that the
polarimetric covariance assumes special structures when some
symmetric scattering mechanisms impact on the polarimetric
returns. In this respect, a framework capable of identifying the
above-mentioned scattering symmetries has been developed in
[7], exploiting the structure shared by the covariance (or coher-
ence) matrix. The derived problem is a composite hypothesis
test including nested instances solved resorting to the model
order selection (MOS) rules [10], [11], [12]. To be precise, for
each pixel under test, a neighborhood assumed to share some
homogeneity properties (i.e., the same spectral properties) is
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extracted before the MOS computation. Unfortunately, for real
SAR images, the homogeneity assumption for the pixel in
the neighborhood cannot be often considered valid due to the
presence of outliers, power variations, noise spikes, speckle,
point-like targets, and so on, with a consequent classification
performance degradation.

To overcome this drawback, this letter proposes an enhanced
algorithm aimed at improving the symmetry classification
performance of the method developed in [7] performing a
prescreening of the most homogeneous neighboring looks
before the MOS computation. This operation is conducted
excising the pixels sharing the highest values of the gen-
eralized inner product (GIP) computed using the geometric
barycenters as covariance estimates [13]. Tests conducted on
real-recorded L-band data have shown the effectiveness of the
proposed method that overcomes the standard one developed
for homogeneous scenes.

The remainder of the letter is organized as follows.
In Section II, the problem is introduced, and the proposed
algorithm is described in detail. Section III discusses results
obtained on the L-band SAR data. Finally, Section IV con-
cludes the letter.1

II. PROBLEM FORMULATION AND
ALGORITHM DESCRIPTION

In this letter, we propose an enhanced algorithm for covari-
ance symmetries’ classification after a proper selection of
the most homogeneous looks within the neighborhood of
the pixel under test. The algorithm, starting from the full-
polarimetric SAR image, for each pixel under test, extracts
its neighborhood through a sliding window. Then, the most
homogeneous looks are screened applying the outlier cancel-
lation procedure based on the GIP developed in [13] for radar
detection purposes. Once the most homogeneous data looks

1Notation: We use boldface for vectors a (lower case) and matrices A
(upper case). The conjugate and conjugate transpose operators are denoted by
the symbols (·)∗ and (·)†, respectively. tr {·} and det(·) are, respectively, the
trace and the determinant of the square matrix argument. diag (a) indicates
the diagonal matrix whose i th diagonal element is the i th entry of a. The
letter j represents the imaginary unit, and for any complex number x , |x |

represents its modulus. For a matrix A, whose eigenvalue decomposition is
A = U Adiag (λA)U†

A , with U A the unitary matrices containing its eigenvec-
tors and λA = [λA

1 , . . . , λA
N ] the vector of the corresponding eigenvalues,

we define log A = U Adiag (λL
A)U†

A with λL
A = [log(λA

1 ), . . . , log(λA
N )],

exp A = U Adiag (λE
A)U†

A , with λE
A = [exp(λA

1 ), . . . , exp(λA
N )], and Aα

=

U A3α
AU†

A with α ∈ R+. Finally, L(A) indicates the Cholesky decomposition
[14, p. 114] of the matrix A.
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Fig. 1. Datacube of the full-polarimetric SAR images.

are selected, their sample matrix is computed and used as
input to the covariance symmetry detection procedure of [7].
Sections II-A–II-D provide a deep description of all the steps
composing the proposed framework.

A. Polarimetric SAR Datacube Formation

The input of the algorithm is the full-polarimetric SAR
image of the observed scene arranged to form a datacube
as illustrated in Fig. 1. More precisely, for each pixel to
analyze, N = 4 complex returns associated with each of the
four polarimetric channels, say IHH, IHV, IVH, and IVV, are
recorded. Hence, the N measurements associated with the
same pixel are saved in X(l, m), l = 1, . . . , L and m =

1, . . . , M (L and M are the azimuth/range sizes of the image)
to obtain a 3-D datacube X of size L × M × N . Therefore,
the proposed method extracts a rectangular neighborhood A
of size K = W1 × W2 ≥ N for each pixel under test.
The subset of pixels representing the small datacube extracted
through A is organized in matrix form, indicated with R,
where each column is the polarimetric vector of each return in
A contained. Then, R is modeled as a random matrix, whose
columns, r1, . . . , r K , are modeled as independent and identi-
cally distributed (i.i.d.) zero-mean circular complex Gaussian
random vectors with covariance M.

B. Homogeneous Data Looks Screening Procedure

The screening procedure presented in this section is aimed
at selecting the most homogeneous looks contained in the
sliding window. Hence, starting from the K data looks in the
neighborhood of the pixel under test, it rejects the κ0 vectors
sharing the highest GIP values [15], [16], [17]. Following
the lead of [13], the GIP is herein computed with the
geometric barycenters (described in the next subsection) for
their selective capabilities in the space of positive definite
matrices. To this aim, we indicate with � = {1, 2, . . . , K }

the set of indices for all the available looks, and with �0 =

{k1, k2, . . . , kK−κ0} ⊆ � the subset (of size K̄ = K − κ0) of
the looks selected after the excision process. Hence, the data
screening method comprises the following two main steps.
First, starting from the available K looks, r1, . . . , r K , their

covariance matrix is estimated as the geometric barycenter
M̂d having fixed a specific distance d(·, ·) in the space of
positive definite covariance matrices (this estimation procedure
is explained in Section II-C). The second step evaluates the
following quadratic form (dubbed GIP) for each single data
contained within the set �, that is,

ρ
(d)
k = r†

k M̂−1
d rk, k = 1, . . . , K . (1)

Once ρ
(d)
k , k = 1, . . . , K , is computed, it needs to be

sorted in decreasing order and stored in the vector ρ(d).
Finally, all the κ0 data looks showing the highest values of
GIP in ρ(d) are canceled, namely, the set �0 of the selected
K̄ = K − κ0 indices is derived. Since the GIP can measure
the energy of the vector M̂−(1/2)

d rk , the selection algorithm
removes the κ0 looks containing the highest energy in the
so-called quasi-whitened space. This motivates the application
of this procedure for data screening.

1) Adaptive Selection of the Parameter κ0: Before choos-
ing the parameter κ0, it is worth observing that it rules
the tradeoff between the amount of outliers to excise and
the remaining homogeneous looks used for the next sample
covariance estimation process. In fact, increasing κ0 allows for
a better outliers’ cancellation at the expense of a poor sample
covariance estimate because of the reduced number of sample
data. For these reasons, the prior set of the parameter κ0 is not
a simple task, and so there is the need to resort to its adaptive
selection. Hence, the considered adaptive procedure consists
in evaluating the energy distribution in the data looks through
their GIP values. A possible choice sets κ0 as the index in the
sorted ρ(d) such that the first κ0 GIP values correspond to a
preassigned percentage, say ξ , of the whole energy contained
in ρ(d).

C. Barycenter-Based Covariance Estimates

This section is devoted to the description of the geometric
barycenters for covariance estimate that arise from the dis-
tances defined in the space of positive definite matrices [13].
More precisely, the geometric barycenters are derived from
a set of basic covariance matrix estimates in turn computed
from the available data looks. In this respect, denoting by
Sk , k = 1, . . . , K , the basic covariance matrix estimates, the
corresponding geometric barycenter is

M̂d = arg min
M

1
K

K∑
k=1

d2(Sk, M) (2)

where d(·, ·) : A ≻ 0, B ≻ 0 → [0, +∞) is a specific distance
defined in the space of positive definite matrices.

The basic covariance estimates Sk , k = 1, . . . , K , are
directly derived from the available data looks rk as in [13].
Precisely, the basic matrix estimate Sk is found as that
matrix which minimizes the Frobenius norm from the rank-one
covariance rk r†

k with the constraint Sk ⪰ σ 2
0 I [18] (where

σ 2
0 is the thermal noise power level) as the optimal solution

to the following optimization problem:

P

min
Sk

||rk r†
k − Sk ||

2

s.t. Sk ⪰ σ 2
0 I .

(3)
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Problem P admits a closed-form solution (whose proof is
provided in [13]), i.e.,

Sk = Uk3kU†
k (4)

with

3k = diag
([

max
(
σ 2

0 , ||rk ||
2), σ 2

0 , . . . , σ 2
0

])
(5)

and Uk the unitary matrix of the eigenvectors of rk r†
k with the

first eigenvector corresponding to the eigenvalue ||rk ||
2.

As proved in [13], from the set of basic covariance esti-
mates, viz., Sk ∈ CN×N , k = 1, . . . , K , the solution to the
optimization problem in (2) can be uniquely found, once the
specific distance has been defined. Therefore, particularizing
(2) for some distances [13], [19], it is possible to derive in
closed form the corresponding geometric barycenter. Specifi-
cally, let A and B be two positive definite Hermitian matrices,
we have

1) Log-Euclidean distance,

dL(A, B) =

√
tr
{
(log A − log B)(log A − log B)†

}
and the corresponding log-Euclidean estimator is

M̂ L = exp

{
1
K

K∑
i=1

log Si

}
. (6)

2) Power-Euclidean distance

dA(A, B) =

√
tr
{
(Aα

− Bα)(Aα
− Bα)†

}
and the corresponding power-Euclidean estimator is

M̂ A =

(
1
K

K∑
i=1

Sα
i

)1/α

. (7)

The coefficient α usually lies in the set [1/2, 1], and it
is obvious that for α = 1, the power-Euclidean becomes
the Euclidean estimator, whereas for α = 1/2 it takes
the name of root-Euclidean estimator.

3) Cholesky distance

dC(A, B) =

√
tr
{
[L(A) − L(B)][L(A) − L(B)]†}

and the corresponding Cholesky estimator is

M̂C = 1̂C1̂
†
C where 1̂C =

1
K

K∑
i=1

L(Si ). (8)

Finally, the noise power level involved in (3) is recovered
exploiting the cross-polarized channels IHV and IVH. As a
matter of fact, they show some mismatches between each other
due to noise variations if reciprocity is assumed valid [20],
[21]. Hence, the thermal noise power level can be evaluated
as follows:

σ̂ 2
0 =

1
M L

L∑
l=1

M∑
m=1

|IHV(l, m) − IVH(l, m)|2. (9)

D. Covariance Symmetry Classification

The second main step of the proposed framework is
described in this section. In particular, after applying
the screening procedure described in Section II-B, the
full-polarimetric image is first reduced to N̄ = 3 channels
fusing together IHV and IVH (substituting them by their
coherent average [22]). Hence, a new filtered polarimetric data
matrix R̄ of size L×M×N̄ is used in place of R for classifying
symmetries applying the algorithm proposed in [7]. For read-
ers’ ease, in what follows, the symmetry detection algorithm
of [7] is briefly described. The focus is on the classification
of the special covariance/coherence structures exhibited in the
presence of objects scattering with a specific symmetry [2],
[6, pp. 69–72]. So, the data classification problem focuses
on the exploitation of the scattering properties of the pixel
under test and of its neighbors. To be precise, a dominant
symmetry is associated with each pixel on the basis of the
specific structure assumed by its covariance matrix. Therefore,
distinguishing among four different symmetries results in the
following multiple hypothesis testing problem

H1 : no symmetry (n = 9)

H2 : reflection symmetry (n = 5)

H3 : rotation symmetry (n = 3)

H4 : azimuth symmetry (n = 2)

(10)

where in brackets the number of real scalar values describing
the specific covariance has been indicated. It is worth recalling
that the reflection symmetry with respect to a vertical plane
can be observed over, for instance, on water surfaces in the
upwind/downwind direction, plowed fields in the direction
perpendicular to the row structure, on forest, snow, and so
on [2]). Differently, the rotation symmetry (i.e., the covariance
matrix is invariant under the rotation around an axis by any
considered angle) can be experienced in the presence of dense,
randomly oriented foliage. Finally, the azimuth symmetry (that
is the combination of a rotation and a reflection symmetry
in any plane which contains the rotation symmetry axis) can
be observed in vegetated area when foliage is penetrated by
the electromagnetic wave that is scattered by the horizontal
branches or the vertical tree trunks [2].

Now, since (10) is a testing problem including both nested
and non-nested hypotheses, the generalized maximum like-
lihood (GML) approach completely fails since the likelihood
always assumes the highest value described by the H1 hypoth-
esis. This problem is overcome in [7], where a modified GML
based on the MOS [10], [11], [12] is devised to deal with
nested instances. This procedure consists in evaluating the
decision statistic under each hypothesis, and then the order
is selected as that corresponding to the minimum between
the four statistics. Therefore, the decision statistics can be
compactly written as follows:

−2 log
(

f
(

R̄|M̂(n)
))

+ n η(n, K̄ ) (11)

where f ¯R(R̄|M) is the complex multivariate probability den-
sity function (pdf) of the screened observable matrix R̄,
with M̂(n) the ML estimate of M comprising n parameters.
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Fig. 2. Classified symmetries within the L-band EMISAR data of Foulum area with the BIC-based selectors and K = 49. Subplots refer to (a) optical image
drawn from Google Earth©, (b) standard classifier from [7], and (c) proposed classifier with log-Euclidean barycenter.

The term n η(n, K̄ ) is the penalty coefficient that is aimed
at penalizing overfitting [11]. In this letter, the focus is on
the Bayesian information criterion (BIC) setting η(n, K̄ ) =

log(K̄ ). However, other selection strategies can be applied as
in [7].

Hence, maximizing the likelihood of R̄ under each hypothe-
sis and substituting their respective expressions in (11), it gives
rise to the following decision statistics (the interested readers
can refer to [7] for detailed derivations):

1) H1:

2K̄ log det(S) + 6K̄ + 6K̄ log(π) + 9 log(K̄ )

with S = (1/K̄ )R̄ R̄† the sample covariance matrix
obtained from the screened data R̄.

2) H2:

2K̄ log det
(
S̄1,1

)
+ 2K̄ log(S̄3,3) + 6K̄

+ 6K̄ log(π) + 5 log(K̄ )

with S̄ = U SU†
=

[
S̄1,1 S̄1,3
S̄3,1 S̄3,3

]
.

3) H3:

2K̄ log det
(

1
2

(
S̃2,2 + J S̃2,2 J

))
+ 2K̄ log

(
S̃1,1

)
+ 6K̄ + 2K̄ log 2 + 6K̄ log(π) + 3 log(K̄ )

with S̃ = V ET ST † EV †
=

[
S̃1,1 S̃1,2
S̃2,1 S̃2,2

]
, and J a

permutation matrix of order 2.
4) H4:

2K̄ log
(

Ŝ1,1
)

+ 4K̄ log
(

Ŝ2,2 + Ŝ3,3

2

)
+ 6K̄

+ 2K̄ log(2) + 6K̄ log(π) + 2 log(K̄ )

with Ŝ = ET ST † E and Ŝ1,1, Ŝ2,2, Ŝ3,3 its diagonal
entries, having defined the following transformation

matrices

U =

 1 0 0
0 0 1
0 1 0

, E =

 1 0 0
0 1/

√
2 0

0 0 1


T =

1
√

2

 1 0 1
1 0 −1
0

√
2 0

, V =

 1 0 0
0 0 j
0 1 0

.

Finally, the hypothesis corresponding to the minimum deci-
sion statistic is selected, that is,

ĥ = arg min
h

BIC(h) (12)

where h = 1, . . . , 4 is the index identifying the specific
hypothesis. In other words, for each pixel under test, the
selected structure is the one associated with H = Hĥ .

III. TESTS ON MEASURED SAR DATA

In this section, the proposed methodology is validated on the
L-band (1.25 GHz) coherent polarimetric dataset,2 recorded
by the fully polarimetric Danish airborne SAR system, elec-
tromagnetic institute SAR (EMISAR) on April 17, 1998. The
SAR image of size 1750 × 1000 pixels has a spatial resolution
of 2 × 2 m, with a ground range swath of about 12 km. It is
representative of a scene of the Foulum area (DK), Denmark,
and contains a mixed urban, vegetation, and water scene.

The optical image of the Foulum area, drawn from Google
Earth© and compressed in one dimension to better match
with the SAR image, is depicted as ground truth in Fig. 2(a).
Furthermore, in Fig. 2(b), the classified symmetries are plotted
using the BIC for the homogeneous case developed in [7].
Conversely, subplot (c) of the same figure reports the clas-
sified symmetries applying the proposed procedure with the

2Data can be downloaded at https://earth.esa.int/web/polsarpro/data-
sources/sample-datasets
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log-Euclidean barycenter (indicated as BIC-L). All the figures
refer to a sliding window of size 7 × 7 (i.e., K = 49 looks),
filtered with κ0 selected in the adaptive fashion described in
Section II-B1 setting ξ = 20%.3 For each pixel of the scene,
a specific color is associated with a specific detected symmetry,
viz., blue for H1 (no symmetry), green for H2 (reflection
symmetry), black for H3 (rotation symmetry), and yellow for
H4 (azimuth symmetry). Obviously, pixels having the same
reflection characteristics are classified in the same manner
(i.e., with the same color).

Interestingly, the results highlight that lake water is clas-
sified as the absence of symmetry, forests and plants are
classified with azimuth symmetry, crops and bare fields are
classified with the reflection symmetry, while some buildings
in urban areas are classified with a rotation symmetry. From a
further visual inspection of the colored maps, it is evident
that the proposed method gives some advantages over the
standard classifier of [7]. In fact, analyzing the forest area, the
number of pixels sharing the azimuth symmetry is reasonably
higher than those in the standard case. In general, images
classified with the proposed method show a sharper separation
of different areas and a reduced number of isolated pixels
differently classified with respect to their neighborhood in the
homogeneous areas. It is also worth underlining that tests
conducted with the other distances (viz., Euclidean, root-
Euclidean, and power-Euclidean), not reported here for brevity,
have shown results comparable to the BIC-L. Conversely, the
Cholesky barycenter did not provided such good results.

IV. FINAL REMARKS

This letter has presented an enhanced framework for covari-
ance symmetries classification in polarimetric SAR images.
The devised method improves the performance of an ear-
lier work based on the exploitation of the special structures
assumed by the coherence matrix when the polarimetric
returns of the pixels under test share specific symmetrical
properties. More precisely, before the application of the MOS
for symmetry classification, the procedure screens the most
homogeneous data in the neighborhood of each pixel through
the exploitation of the selective capabilities of the geometric
barycenters. Furthermore, the proposed framework also takes
advantage of the closed-form expression of the barycenters,
thus keeping the overall computational complexity confined.
Tests conducted on the L-band real-recorded polarimetric
SAR data have shown the benefits of applying the screening
procedure before covariance classification. As potential future
research tracks, it would be interesting to test the algorithm
on data recorded at different frequency bands.
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