15 research outputs found

    Role of the equatorial ionization anomaly in the development of the evening prereversal enhancement of the equatorial zonal electric field

    Get PDF
    1] During the evening prereversal enhancement of the zonal electric field (EPRE) that begins around 1700 LT when the F region neutral winds turn eastward, as assumed here, and continues till the postsunset zonal electric field reversal time, an overall positive feedback is shown to occur between the eastward electric field in the lower side of the flux tube integrated (LSFTI) F region and the increased flux tube integrated Pedersen conductivity (FTIC) of the tropical F region. The increase in this FTIC can take place because of the increase in electron density through the increase in solar flux and the intensification of the equatorial ionization anomaly (EIA). While the influence of EIA on EPRE is immediate, the growth time for EIA is 2 to 3 h. Therefore, for a strong EPRE to occur, a fairly strong EIA is required at 1700 LT which is then sustained by the electric field associated with EPRE during its growth period. This study suggests that the postsunset eastward electric field is due to the combined currents in the equatorial electrojet and the LSFTI F regions that get diverted from the daytime Sq current system and flow from the presunset region toward the postsunset zonal electric field reversal region. Thereafter these currents turn and flow poleward to meet the current continuity requirement of the F region dynamo followed by a westward turn to rejoin the daytime Sq current system in midlatitudes. Thus the currents responsible for EPRE are an extension of the daytime Sq current system

    Mesospheric anomalous diffusion during noctilucent cloud scenarios

    Get PDF
    The Andenes specular meteor radar shows meteor trail diffusion rates increasing on average by about 10&thinsp;% at times and locations where a lidar observes noctilucent clouds (NLCs). This high-latitude effect has been attributed to the presence of charged NLC after exploring possible contributions from thermal tides. To make this claim, the current study evaluates data from three stations at high, middle, and low latitudes for the years 2012 to 2016 to show that NLC influence on the meteor trail diffusion is independent of thermal tides. The observations also show that the meteor trail diffusion enhancement during NLC cover exists only at high latitudes and near the peaks of NLC layers. This paper discusses a number of possible explanations for changes in the regions with NLCs and leans towards the hypothesis that the relative abundance of background electron density plays the leading role. A more accurate model of the meteor trail diffusion around NLC particles would help researchers determine mesospheric temperature and neutral density profiles from meteor radars at high latitudes.</p

    Role Of the Sun and the Middle atmosphere/thermosphere/ionosphere In Climate (ROSMIC): a retrospective and prospective view

    Get PDF
    While knowledge of the energy inputs from the Sun (as it is the primary energy source) is important for understanding the solar-terrestrial system, of equal importance is the manner in which the terrestrial part of the system organizes itself in a quasi-equilibrium state to accommodate and re-emit this energy. The ROSMIC project (2014–2018 inclusive) was the component of SCOSTEP’s Variability of the Sun and Its Terrestrial Impact (VarSITI) program which supported research into the terrestrial component of this system. The four themes supported under ROSMIC are solar influence on climate, coupling by dynamics, trends in the mesosphere lower thermosphere, and trends and solar influence in the thermosphere. Over the course of the VarSITI program, scientific advances were made in all four themes. This included improvements in understanding (1) the transport of photochemically produced species from the thermosphere into the lower atmosphere; (2) the manner in which waves produced in the lower atmosphere propagate upward and influence the winds, dynamical variability, and transport of constituents in the mesosphere, ionosphere, and thermosphere; (3) the character of the long-term trends in the mesosphere and lower thermosphere; and (4) the trends and structural changes taking place in the thermosphere. This paper reviews the progress made in these four areas over the past 5 years and summarizes the anticipated research directions in these areas in the future. It also provides a physical context of the elements which maintain the structure of the terrestrial component of this system. The effects that changes to the atmosphere (such as those currently occurring as a result of anthropogenic influences) as well as plausible variations in solar activity may have on the solar terrestrial system need to be understood to support and guide future human activities on Earth

    Magnetic storm-induced enhancement in neutral composition at low latitudes as inferred by O(<sup>1</sup>D) dayglow measurements from Chile

    No full text
    We describe the effect of the 6 November 2001 magnetic storm on the low latitude thermospheric composition. Daytime red line (OI 630.0nm) emissions from Carmen Alto, Chile showed anomalous 2-3 times larger emissions in the morning (05:30-08:30 Local Time;&nbsp;LT) on the disturbed day compared to the quiet days. We interpret these emission enhancements to be caused due to the increase in neutral densities over low latitudes, as a direct effect of the geomagnetic storm. As an aftereffect of the geomagnetic storm, the dayglow emissions on the following day show gravity wave features that gradually increase in periodicities from around 30min in the morning to around 100min by the evening. The integrated dayglow emissions on quiet days show day-to-day variabilities in spatial structures in terms of their movement away from the magnetic equator in response to the Equatorial Ionization Anomaly (EIA) development in the daytime. The EIA signatures in the daytime OI 630.0nm column-integrated dayglow emission brightness show different behavior on days with and without the post-sunset Equatorial Spread F (ESF) occurrence

    Large- and small-scale periodicities in the mesosphere as obtained from variations in O<sub>2</sub> and OH nightglow emissions

    No full text
    Using 3 years (2013–2015) of O2(0–1) and OH(6–2) band nightglow emission intensities and corresponding rotational temperatures as tracers of mesospheric dynamics, we have investigated large- and small-timescale variations in the mesosphere over a low-latitude location, Gurushikhar, Mount Abu (24.6° N, 72.8° E), in India. Both O2 and OH intensities show variations similar to those of the number of sunspots and F10.7 cm radio flux with coherent periodicities of 150 ± 2.1, 195 ± 3.6, 270 ± 6.4, and 420 ± 14.8 days, indicating a strong solar influence on mesospheric dynamics. In addition, both mesospheric airglow intensities also showed periodicities of 84 ± 0.6, 95 ± 0.9, and 122 ± 1.3 days which are of atmospheric origin. With regard to the variability of the order of a few days, O2 and OH intensities were found to be correlated, in general, except when altitude-dependent atmospheric processes were operative. To understand mesospheric gravity wave behavior over the long term, we have carried out a statistical study using the periodicities derived from the nocturnal variations in all four parameters (O2 and OH intensities and their respective temperatures). It was found that the major wave periodicity of around 2 h duration is present in all the four parameters. Our analyses also reveal that the range of periods in O2 and OH intensities and temperatures is 11 to 24 and 20 to 60 min, respectively. Periods less than 15 min were not present in the temperatures but were prevalent in both emission intensities. No seasonal dependence was found in either the wave periodicities or the number of their occurrence

    New Insights on the Precursors to the Onset of Equatorial Plasma Irregularity Generation

    No full text
    This work presents some new findings in terms of the vertical propagation speeds of gravity waves in the daytime as possible precursors to the ESF. These findings have resulted from a new approach of analyzing the radiowave reflections from the ionosphere to obtain the information of gravity waves in the daytime. Also, the typical horizontal gravity wave scale sizes in the daytime that could potentially offer the required perturbation for the ESF generation are also presented

    Spectral imaging of proton aurora and twilight at Tromsø, Norway

    No full text
    An imaging Echelle spectrograph designed for high-resolution studies of selected spectral features located in the visible spectrum was deployed from November 2001 until April 2003 in Tromsø, Norway. For moderately disturbed magnetic conditions, Tromsø is located on the equatorial edge of the evening auroral oval for several hours. Energetic protons are frequently the dominant particle energy source in this region. For this experiment, four spectral windows were selected, each around different emission features: H? (656.3 nm), H? (486.1 nm), N2+1NG 427.8 nm, and OI 777.4 nm. The 8° long slit of the spectrograph was centered on the magnetic zenith. This instrument provided simultaneous, high-resolution (~0.1 nm) spectra of H? and H? emissions, which offers a unique opportunity to investigate the H? to H? Balmer decrement in proton aurora. Information on the cloud cover and on the overall auroral activity was provided by a large field of view (70°) conventional imaging spectrograph that spans the 350–800 nm spectral range. In this paper we describe both instruments and demonstrate their capabilities for the study of the H Balmer emissions in twilight and during auroral activity. Our high-resolution spectra taken in twilight could be used to observe the variability of the geocoronal component over time and to compare the derived variability with midlatitude sites. We conclude that the 0.1 nm spectral resolution is sufficient to identify and take into account contaminating OH and N2 1PG features in H? emission profiles. Comparison of H? Doppler profiles observed at different locations (Tromsø, Poker Flat, Svalbard) in proton aurora is presented. Lummerzheim and Galand [2001] find that the shape of the violet wing of the Balmer profile is a more suitable indicator of the mean energy of the incident protons than the Doppler shift of the peak. Numerous uncertainties in measured and modeled H? and H? line profiles preclude using the Balmer decrement as an indicator of the precipitating proton flux
    corecore