3,450 research outputs found

    Non-isothermal filaments in equilibrium

    Full text link
    The physical properties of the so-called Ostriker isothermal filament (Ostriker 1964) have been classically used as benchmark to interpret the stability of the filaments observed in nearby clouds. However, recent continuum studies have shown that the internal structure of the filaments depart from the isothermality, typically exhibiting radially increasing temperature gradients. The presence of internal temperature gradients within filaments suggests that the equilibrium configuration of these objects should be therefore revisited. The main goal of this work is to theoretically explore how the equilibrium structure of a filament changes in a non-isothermal configuration. We solve the hydrostatic equilibrium equation assuming temperature gradients similar to those derived from observations. We obtain a new set of equilibrium solutions for non-isothermal filaments with both linear and asymptotically constant temperature gradients. Our results show that, for sufficiently large internal temperature gradients, a non-isothermal filament could present significantly larger masses per unit length and shallower density profiles than the isothermal filament without collapsing by its own gravity. We conclude that filaments can reach an equilibrium configuration under non-isothermal conditions. Detailed studies of both the internal mass distribution and temperature gradients within filaments are then needed in order to judge the physical state of filaments.Comment: 5 pages, 2 figures, accepted for publication in A&

    Status of the commissioning of ATLAS

    Get PDF
    The status of commissioning and readiness of the ATLAS experiment is reviewed, covering the installation of the last components, the test of the magnetic system, the combined runs with cosmic rays, the test of the computing system and the preparation for physics studies. The status of the detector with the first LHC beams in September 2008 is presented

    Status of ATLAS commissioning

    Get PDF
    The readiness of ATLAS is presented, covering the last installation and integration operations, combined runs with cosmic rays, commissioning of the computing system and preparation for early physics, and discussing the status of the system at the start-up of LHC

    Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas

    Full text link
    Wave-vector resolved radio frequency (rf) spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at Tc, and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with Quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above Tc.Comment: 9 pages, 9 figures. Substantially revised version (to appear in Phys. Rev. Lett.

    THE PALLADIOLIBRARY GEO-MODELS: AN OPEN 3D ARCHIVE TO MANAGE AND VISUALIZE INFORMATION-COMMUNICATION RESOURCES ABOUT PALLADIO

    Get PDF
    Abstract. The paper describes objectives, methods, procedures and outcomes of the development of the digital archive of Palladio works and documentation: the PALLADIOLibrary of Centro Internazionale di Studi di Architettura Andrea Palladio di Vicenza (CISAAP). The core of the application consists of fifty-one reality-based 3D models usable and navigable within a system grounded on GoogleEarth. This information system, a collaboration of four universities bearers of specific skills returns a comprehensive, structured and coherent semantic interpretation of Palladian landscape through shapes realistically reconstructed from historical sources and surveys and treated for GE with Ambient Occlusion techniques, overcoming the traditional display mode

    Pseudorapidity Distribution of Charged Particles in PbarP Collisions at root(s)= 630GeV

    Full text link
    Using a silicon vertex detector, we measure the charged particle pseudorapidity distribution over the range 1.5 to 5.5 using data collected from PbarP collisions at root s = 630 GeV. With a data sample of 3 million events, we deduce a result with an overall normalization uncertainty of 5%, and typical bin to bin errors of a few percent. We compare our result to the measurement of UA5, and the distribution generated by the Lund Monte Carlo with default settings. This is only the second measurement at this level of precision, and only the second measurement for pseudorapidity greater than 3.Comment: 9 pages, 5 figures, LaTeX format. For ps file see http://hep1.physics.wayne.edu/harr/harr.html Submitted to Physics Letters

    Transverse Momentum Distributions for Heavy Quark Pairs

    Full text link
    We study the transverse momentum distribution for a pairpair of heavy quarks produced in hadron-hadron interactions. Predictions for the large transverse momentum region are based on exact order αs3\alpha_s^3 QCD perturbation theory. For the small transverse momentum region, we use techniques for all orders resummation of leading logarithmic contributions associated with initial state soft gluon radiation. The combination provides the transverse momentum distribution of heavy quark pairs for all transverse momenta. Explicit results are presented for bbˉb\bar b pair production at the Fermilab Tevatron collider and for ccˉc\bar c pair production at fixed target energies.Comment: LaTeX (27 pages text, 8 figures not included, but available on request

    Shape-resonant superconductivity in nanofilms: from weak to strong coupling

    Full text link
    Ultrathin superconductors of different materials are becoming a powerful platform to find mechanisms for enhancement of superconductivity, exploiting shape resonances in different superconducting properties. Here we evaluate the superconducting gap and its spatial profile, the multiple gap components, and the chemical potential, of generic superconducting nanofilms, considering the pairing attraction and its energy scale as tunable parameters, from weak to strong coupling, at fixed electron density. Superconducting properties are evaluated at mean field level as a function of the thickness of the nanofilm, in order to characterize the shape resonances in the superconducting gap. We find that the most pronounced shape resonances are generated for weakly coupled superconductors, while approaching the strong coupling regime the shape resonances are rounded by a mixing of the subbands due to the large energy gaps extending over large energy scales. Finally, we find that the spatial profile, transverse to the nanofilm, of the superconducting gap acquires a flat behavior in the shape resonance region, indicating that a robust and uniform multigap superconducting state can arise at resonance.Comment: 7 pages, 4 figures. Submitted to the Proceedings of the Superstripes 2016 conferenc
    corecore